cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A379319 Even numbers whose product of prime indices is a multiple of their sum of prime indices.

Original entry on oeis.org

2, 30, 84, 108, 150, 154, 190, 198, 200, 264, 364, 390, 442, 468, 490, 506, 580, 624, 630, 658, 700, 714, 810, 840, 846, 874, 900, 918, 952, 988, 1020, 1080, 1110, 1118, 1120, 1224, 1254, 1330, 1430, 1440, 1480, 1596, 1632, 1666, 1708, 1710, 1716, 1786, 1794
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The prime indices of 150 are {1,2,3,3}, with sum 9 and product 18, so 150 is in the sequence.
The terms together with their prime indices begin:
     2: {1}
    30: {1,2,3}
    84: {1,1,2,4}
   108: {1,1,2,2,2}
   150: {1,2,3,3}
   154: {1,4,5}
   190: {1,3,8}
   198: {1,2,2,5}
   200: {1,1,1,3,3}
   264: {1,1,1,2,5}
   364: {1,1,4,6}
   390: {1,2,3,6}
   442: {1,6,7}
   468: {1,1,2,2,6}
   490: {1,3,4,4}
		

Crossrefs

Even terms of A326149, which is counted by A057568 (strict A379733).
For nonprime instead of even we have A326150.
For odd instead of even we have A379318, counted by A379734 (strict A379735).
Partitions of this type are counted by A379320.
For squarefree instead of even we have A379844.
The squarefree case is A379845.
Divide all terms by 2 to get A380217.
A000040 lists the prime numbers, differences A001223.
A003963 multiplies together prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],MemberQ[prix[#],1]&&Divisible[Times@@prix[#],Total[prix[#]]]&]

A380217 Numbers whose product of prime indices is a multiple of their sum of prime indices plus one.

Original entry on oeis.org

1, 15, 42, 54, 75, 77, 95, 99, 100, 132, 182, 195, 221, 234, 245, 253, 290, 312, 315, 329, 350, 357, 405, 420, 423, 437, 450, 459, 476, 494, 510, 540, 555, 559, 560, 612, 627, 665, 715, 720, 740, 798, 816, 833, 854, 855, 858, 893, 897, 899, 979, 1026, 1064
Offset: 1

Views

Author

Gus Wiseman, Jan 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The prime indices of 75 are {2,3,3}, with product 18 and sum 8, and since 18 is a multiple of 8+1, 75 is in the sequence.
The terms together with their prime indices begin:
     1: {}
    15: {2,3}
    42: {1,2,4}
    54: {1,2,2,2}
    75: {2,3,3}
    77: {4,5}
    95: {3,8}
    99: {2,2,5}
   100: {1,1,3,3}
   132: {1,1,2,5}
   182: {1,4,6}
   195: {2,3,6}
   221: {6,7}
   234: {1,2,2,6}
   245: {3,4,4}
		

Crossrefs

The case of equality is A325041, counted by A380218 = A028422 except n=3.
Without "plus one" we get A326149, counted by A057568, see A379733, A379734, A379735.
Double all terms to get A379319.
Partitions of this type are counted by A379320.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Divisible[Times@@prix[#],1+Total[prix[#]]]&]
  • PARI
    vpind(n)=my(v=List(), f=factor(n)); for(i=1, #f~, for(j=1, f[i, 2], listput(v, primepi(f[i, 1])))); Vec(v); \\ A112798
    isok(k) = my(vind = vpind(k)); (vecprod(vind) % (vecsum(vind)+1)) == 0; \\ Michel Marcus, Jan 21 2025

Formula

a(n) = A379319(n)/2.

A379845 Even squarefree numbers x such that the product of prime indices of x is a multiple of the sum of prime indices of x.

Original entry on oeis.org

2, 30, 154, 190, 390, 442, 506, 658, 714, 874, 1110, 1118, 1254, 1330, 1430, 1786, 1794, 1798, 1958, 2310, 2414, 2442, 2470, 2730, 2958, 3034, 3066, 3266, 3390, 3534, 3710, 3770, 3874, 3914, 4042, 4466, 4526, 4758, 4930, 5106, 5434, 5474, 5642, 6090, 6106
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The terms together with their prime indices begin:
     2: {1}
    30: {1,2,3}
   154: {1,4,5}
   190: {1,3,8}
   390: {1,2,3,6}
   442: {1,6,7}
   506: {1,5,9}
   658: {1,4,15}
   714: {1,2,4,7}
   874: {1,8,9}
  1110: {1,2,3,12}
		

Crossrefs

Even squarefree case of A326149.
For nonprime instead of even we have A326158.
Squarefree case of A379319.
Even case of A379844.
Partitions of this type are counted by A380221, see A379733, A379735.
A003963 multiplies together prime indices.
A005117 lists the squarefree numbers.
A056239 adds up prime indices.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Select[Range[2,1000],EvenQ[#]&&SquareFreeQ[#]&&Divisible[Times@@prix[#],Plus@@prix[#]]&]

A380216 Numbers whose prime indices have (product)/(sum) equal to an integer > 1.

Original entry on oeis.org

49, 63, 65, 81, 125, 150, 154, 165, 169, 190, 198, 259, 273, 333, 351, 361, 364, 385, 390, 435, 442, 468, 481, 490, 495, 506, 525, 561, 580, 595, 609, 630, 658, 675, 700, 714, 741, 765, 781, 783, 810, 840, 841, 846, 874, 900, 918, 925, 931, 935, 952, 988
Offset: 1

Views

Author

Gus Wiseman, Jan 23 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The terms together with their prime indices begin:
   49: {4,4}
   63: {2,2,4}
   65: {3,6}
   81: {2,2,2,2}
  125: {3,3,3}
  150: {1,2,3,3}
  154: {1,4,5}
  165: {2,3,5}
  169: {6,6}
  190: {1,3,8}
  198: {1,2,2,5}
  259: {4,12}
  273: {2,4,6}
  333: {2,2,12}
  351: {2,2,2,6}
  361: {8,8}
  364: {1,1,4,6}
For example, 198 has prime indices {1,2,2,5}, and 20/10 is an integer > 1, so 198 is in the sequence.
		

Crossrefs

The fraction A003963(n)/A056239(n) reduces to A326153(n)/A326154(n).
The non-proper version is A326149, superset of A326150.
Also a superset of A326151.
The squarefree case is A326158 without first term.
Partitions of this type are counted by A380219.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568 (strict A379733), ranks A326149, see A379735, A380217.
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,1000],Divisible[Times@@prix[#],Total[prix[#]]]&&!SameQ[Times@@prix[#],Total[prix[#]]]&]

A379318 Odd numbers whose product of prime indices is a multiple of their sum of prime indices.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 165, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2025

Keywords

Comments

Contains all odd primes.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The terms together with their prime indices begin:
     2: {1}         53: {16}           109: {29}
     3: {2}         59: {17}           113: {30}
     5: {3}         61: {18}           125: {3,3,3}
     7: {4}         63: {2,2,4}        127: {31}
     9: {2,2}       65: {3,6}          131: {32}
    11: {5}         67: {19}           137: {33}
    13: {6}         71: {20}           139: {34}
    17: {7}         73: {21}           149: {35}
    19: {8}         79: {22}           150: {1,2,3,3}
    23: {9}         81: {2,2,2,2}      151: {36}
    29: {10}        83: {23}           154: {1,4,5}
    30: {1,2,3}     84: {1,1,2,4}      157: {37}
    31: {11}        89: {24}           163: {38}
    37: {12}        97: {25}           165: {2,3,5}
    41: {13}       101: {26}           167: {39}
    43: {14}       103: {27}           169: {6,6}
    47: {15}       107: {28}           173: {40}
    49: {4,4}      108: {1,1,2,2,2}    179: {41}
		

Crossrefs

Including evens gives A326149, counted by A057568.
For nonprime instead of odd we get A326150.
For even instead of odd we get A379319, counted by A379320.
Partitions of this type are counted by A379734, strict A379735, see A379733.
For squarefree instead of odd we get A379844, even case A379845.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],OddQ[#]&&Divisible[Times@@prix[#],Total[prix[#]]]&]
Showing 1-5 of 5 results.