A379319
Even numbers whose product of prime indices is a multiple of their sum of prime indices.
Original entry on oeis.org
2, 30, 84, 108, 150, 154, 190, 198, 200, 264, 364, 390, 442, 468, 490, 506, 580, 624, 630, 658, 700, 714, 810, 840, 846, 874, 900, 918, 952, 988, 1020, 1080, 1110, 1118, 1120, 1224, 1254, 1330, 1430, 1440, 1480, 1596, 1632, 1666, 1708, 1710, 1716, 1786, 1794
Offset: 1
The prime indices of 150 are {1,2,3,3}, with sum 9 and product 18, so 150 is in the sequence.
The terms together with their prime indices begin:
2: {1}
30: {1,2,3}
84: {1,1,2,4}
108: {1,1,2,2,2}
150: {1,2,3,3}
154: {1,4,5}
190: {1,3,8}
198: {1,2,2,5}
200: {1,1,1,3,3}
264: {1,1,1,2,5}
364: {1,1,4,6}
390: {1,2,3,6}
442: {1,6,7}
468: {1,1,2,2,6}
490: {1,3,4,4}
For nonprime instead of even we have
A326150.
Partitions of this type are counted by
A379320.
For squarefree instead of even we have
A379844.
Divide all terms by 2 to get
A380217.
A003963 multiplies together prime indices.
Counting and ranking multisets by comparing sum and product:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],MemberQ[prix[#],1]&&Divisible[Times@@prix[#],Total[prix[#]]]&]
A380217
Numbers whose product of prime indices is a multiple of their sum of prime indices plus one.
Original entry on oeis.org
1, 15, 42, 54, 75, 77, 95, 99, 100, 132, 182, 195, 221, 234, 245, 253, 290, 312, 315, 329, 350, 357, 405, 420, 423, 437, 450, 459, 476, 494, 510, 540, 555, 559, 560, 612, 627, 665, 715, 720, 740, 798, 816, 833, 854, 855, 858, 893, 897, 899, 979, 1026, 1064
Offset: 1
The prime indices of 75 are {2,3,3}, with product 18 and sum 8, and since 18 is a multiple of 8+1, 75 is in the sequence.
The terms together with their prime indices begin:
1: {}
15: {2,3}
42: {1,2,4}
54: {1,2,2,2}
75: {2,3,3}
77: {4,5}
95: {3,8}
99: {2,2,5}
100: {1,1,3,3}
132: {1,1,2,5}
182: {1,4,6}
195: {2,3,6}
221: {6,7}
234: {1,2,2,6}
245: {3,4,4}
Partitions of this type are counted by
A379320.
Counting and ranking multisets by comparing sum and product:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Divisible[Times@@prix[#],1+Total[prix[#]]]&]
-
vpind(n)=my(v=List(), f=factor(n)); for(i=1, #f~, for(j=1, f[i, 2], listput(v, primepi(f[i, 1])))); Vec(v); \\ A112798
isok(k) = my(vind = vpind(k)); (vecprod(vind) % (vecsum(vind)+1)) == 0; \\ Michel Marcus, Jan 21 2025
A379845
Even squarefree numbers x such that the product of prime indices of x is a multiple of the sum of prime indices of x.
Original entry on oeis.org
2, 30, 154, 190, 390, 442, 506, 658, 714, 874, 1110, 1118, 1254, 1330, 1430, 1786, 1794, 1798, 1958, 2310, 2414, 2442, 2470, 2730, 2958, 3034, 3066, 3266, 3390, 3534, 3710, 3770, 3874, 3914, 4042, 4466, 4526, 4758, 4930, 5106, 5434, 5474, 5642, 6090, 6106
Offset: 1
The terms together with their prime indices begin:
2: {1}
30: {1,2,3}
154: {1,4,5}
190: {1,3,8}
390: {1,2,3,6}
442: {1,6,7}
506: {1,5,9}
658: {1,4,15}
714: {1,2,4,7}
874: {1,8,9}
1110: {1,2,3,12}
For nonprime instead of even we have
A326158.
A003963 multiplies together prime indices.
A005117 lists the squarefree numbers.
Counting and ranking multisets by comparing sum and product:
Cf.
A000720,
A001222,
A112798,
A175508,
A324850,
A324851,
A326150,
A326151,
A326153/
A326154,
A326156,
A326157.
A380216
Numbers whose prime indices have (product)/(sum) equal to an integer > 1.
Original entry on oeis.org
49, 63, 65, 81, 125, 150, 154, 165, 169, 190, 198, 259, 273, 333, 351, 361, 364, 385, 390, 435, 442, 468, 481, 490, 495, 506, 525, 561, 580, 595, 609, 630, 658, 675, 700, 714, 741, 765, 781, 783, 810, 840, 841, 846, 874, 900, 918, 925, 931, 935, 952, 988
Offset: 1
The terms together with their prime indices begin:
49: {4,4}
63: {2,2,4}
65: {3,6}
81: {2,2,2,2}
125: {3,3,3}
150: {1,2,3,3}
154: {1,4,5}
165: {2,3,5}
169: {6,6}
190: {1,3,8}
198: {1,2,2,5}
259: {4,12}
273: {2,4,6}
333: {2,2,12}
351: {2,2,2,6}
361: {8,8}
364: {1,1,4,6}
For example, 198 has prime indices {1,2,2,5}, and 20/10 is an integer > 1, so 198 is in the sequence.
The squarefree case is
A326158 without first term.
Partitions of this type are counted by
A380219.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
Cf.
A000720,
A001222,
A028422,
A036844,
A112798,
A301988,
A319000,
A324850,
A324851,
A326156,
A379319,
A379844.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,1000],Divisible[Times@@prix[#],Total[prix[#]]]&&!SameQ[Times@@prix[#],Total[prix[#]]]&]
A379318
Odd numbers whose product of prime indices is a multiple of their sum of prime indices.
Original entry on oeis.org
3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 165, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1
The terms together with their prime indices begin:
2: {1} 53: {16} 109: {29}
3: {2} 59: {17} 113: {30}
5: {3} 61: {18} 125: {3,3,3}
7: {4} 63: {2,2,4} 127: {31}
9: {2,2} 65: {3,6} 131: {32}
11: {5} 67: {19} 137: {33}
13: {6} 71: {20} 139: {34}
17: {7} 73: {21} 149: {35}
19: {8} 79: {22} 150: {1,2,3,3}
23: {9} 81: {2,2,2,2} 151: {36}
29: {10} 83: {23} 154: {1,4,5}
30: {1,2,3} 84: {1,1,2,4} 157: {37}
31: {11} 89: {24} 163: {38}
37: {12} 97: {25} 165: {2,3,5}
41: {13} 101: {26} 167: {39}
43: {14} 103: {27} 169: {6,6}
47: {15} 107: {28} 173: {40}
49: {4,4} 108: {1,1,2,2,2} 179: {41}
For nonprime instead of odd we get
A326150.
Counting and ranking multisets by comparing sum and product:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],OddQ[#]&&Divisible[Times@@prix[#],Total[prix[#]]]&]
Showing 1-5 of 5 results.
Comments