A379908 a(n) is number of n-digit positive integers in which the product of the digits in the even positions equals the product of the digits in the odd positions.
1, 9, 32, 380, 4097, 54054, 700099, 8742818, 108476326, 1285917070, 15207121743, 173726013062, 1982695287783, 22061642063204, 245374194718713, 2677923173095450, 29219674883924922, 314236528160399298, 3379020617685021774, 35924502411735093750, 381913758547904774763
Offset: 1
Crossrefs
Cf. A067042.
Programs
-
Mathematica
a[n_]:=Module[{num=KroneckerDelta[n,1]}, For[k=10^(n-1), k<=10^n-1, k++, If[Product[Part[(digits=IntegerDigits[k]), 2i], {i, Floor[(len=IntegerLength[k])/2]}] == Product[Part[digits, 2i-1], {i, Ceiling[len/2]}], num++]]; num]; Array[a,6]
Formula
Limit_{n->oo} a(n+1)/a(n) = 10.
Extensions
More terms from Jinyuan Wang, Jan 07 2025