cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379944 Smallest number of leading digits of n! that form a prime (or 0 if none exist).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 0, 0, 2, 1, 1, 0, 7, 1, 1, 2, 1, 0, 5, 0, 0, 1, 8, 1, 0, 1, 6, 1, 3, 1, 2, 1, 1, 0, 1, 8, 38, 1, 2, 1, 1, 5, 34, 1, 5, 6, 0, 1, 0, 1, 6, 1, 2, 2, 1, 1, 2, 8, 9, 1, 1, 1, 2, 2, 0, 2, 5, 1, 1, 0, 4, 2, 2, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Carson R. Smith, Jan 07 2025

Keywords

Comments

It appears that as n gets large, a(n) can become arbitrarily large.
It appears that values of n such that a(n) = 0 exist for arbitrarily large n.

Examples

			For n = 3, 3! = 6, 6 is not prime, a(3) = 0.
For n = 19, 19! = 121645100408832000, 1216451 is the smallest prime, a(19) = 7.
		

Crossrefs

Programs

  • Mathematica
    A379944[n_] := Catch[Do[If[PrimeQ[FromDigits[#[[;; k]]]], Throw[k]],{k,Length[#]}] & [IntegerDigits[n!]]; 0];
    Array[A379944, 100, 0] (* Paolo Xausa, Jan 16 2025 *)
  • PARI
    a(n) = my(d=digits(n!)); for (k=1, #d, if (isprime(fromdigits(Vec(d, k))), return(k))); \\ Michel Marcus, Jan 08 2025
  • Python
    import math
    from sympy import isprime
    def a(n):
        factorial = str(math.factorial(n))
        for d in range(1, len(factorial)+1):
            if isprime(int(factorial[:d])):
                return d
        return 0
    

Extensions

More terms from Jinyuan Wang, Jan 07 2025