A379944 Smallest number of leading digits of n! that form a prime (or 0 if none exist).
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 0, 0, 2, 1, 1, 0, 7, 1, 1, 2, 1, 0, 5, 0, 0, 1, 8, 1, 0, 1, 6, 1, 3, 1, 2, 1, 1, 0, 1, 8, 38, 1, 2, 1, 1, 5, 34, 1, 5, 6, 0, 1, 0, 1, 6, 1, 2, 2, 1, 1, 2, 8, 9, 1, 1, 1, 2, 2, 0, 2, 5, 1, 1, 0, 4, 2, 2, 1, 1, 2, 1, 1, 1, 1
Offset: 0
Examples
For n = 3, 3! = 6, 6 is not prime, a(3) = 0. For n = 19, 19! = 121645100408832000, 1216451 is the smallest prime, a(19) = 7.
Links
- Carson R. Smith, Table of n, a(n) for n = 0..2000
Programs
-
Mathematica
A379944[n_] := Catch[Do[If[PrimeQ[FromDigits[#[[;; k]]]], Throw[k]],{k,Length[#]}] & [IntegerDigits[n!]]; 0]; Array[A379944, 100, 0] (* Paolo Xausa, Jan 16 2025 *)
-
PARI
a(n) = my(d=digits(n!)); for (k=1, #d, if (isprime(fromdigits(Vec(d, k))), return(k))); \\ Michel Marcus, Jan 08 2025
-
Python
import math from sympy import isprime def a(n): factorial = str(math.factorial(n)) for d in range(1, len(factorial)+1): if isprime(int(factorial[:d])): return d return 0
Extensions
More terms from Jinyuan Wang, Jan 07 2025
Comments