cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379945 Irregular triangle read by rows: T(n, k) is the numerator of the harmonic mean of all positive divisors of n except the k-th of them.

Original entry on oeis.org

2, 1, 3, 1, 8, 8, 4, 5, 1, 3, 2, 9, 18, 7, 1, 24, 24, 24, 12, 9, 9, 3, 15, 30, 15, 30, 11, 1, 15, 30, 5, 12, 30, 20, 13, 1, 21, 42, 21, 42, 5, 45, 15, 45, 64, 64, 64, 64, 32, 17, 1, 30, 3, 30, 5, 90, 45, 19, 1, 50, 25, 100, 50, 5, 100, 63, 63, 63, 63, 33, 66, 33, 66, 23, 1
Offset: 2

Views

Author

Stefano Spezia, Jan 07 2025

Keywords

Examples

			The irregular triangle begins as:
   2,  1;
   3,  1;
   8,  8,  4;
   5,  1;
   3,  2,  9, 18;
   7,  1;
  24, 24, 24, 12;
   9,  9,  3;
  15, 30, 15, 30;
  ...
The irregular triangle of the related fractions begins as:
     2,     1;
     3,     1;
   8/3,   8/5,   4/3;
     5,     1;
     3,     2,   9/5,  18/11;
   7,1;
  24/7, 24/11, 24/13,   12/7;
   9/2,   9/5,   3/2;
  15/4, 30/13,  15/8,  30/17;
  ...
		

Crossrefs

Cf. A000005, A000203, A001599, A027750, A099377, A379946 (denominator).

Programs

  • Mathematica
    T[n_,k_]:=Numerator[n(DivisorSigma[0,n]-1)/(DivisorSigma[1,n]-n/Part[Divisors[n],k])]; Table[T[n,k],{n,2,23},{k,DivisorSigma[0,n]}]//Flatten

Formula

T(n, k) = numerator(n*(tau(n) - 1)/(sigma(n) - n/A027750(n, k))).

A379947 Positive integers k such that k*(tau(k) - 1)/(sigma(k) - k/d) is not an integer for all the divisors d of k.

Original entry on oeis.org

4, 8, 9, 10, 12, 14, 16, 20, 21, 22, 25, 26, 27, 32, 33, 34, 35, 36, 38, 39, 42, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110
Offset: 1

Views

Author

Stefano Spezia, Jan 07 2025

Keywords

Examples

			See examples in A379945 and A379946.
		

Crossrefs

Programs

  • Mathematica
    H[n_,d_]:=n(DivisorSigma[0,n]-1)/(DivisorSigma[1,n]-n/d); (* A379945/A379946 *) Select[Range[2,110],Sum[Boole[IntegerQ[H[#,d]]],{d,Divisors[#]}]==0 &]

A379948 Positive integers k such that k*(tau(k) - 1)/(sigma(k) - k/d) is an integer for at least one divisor d of k.

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 15, 17, 18, 19, 23, 24, 28, 29, 30, 31, 37, 40, 41, 43, 45, 47, 48, 53, 59, 60, 61, 67, 71, 73, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 117, 120, 127, 131, 135, 137, 139, 140, 149, 151, 157, 163, 167, 173, 179, 180, 181, 191, 193, 196, 197, 199, 200
Offset: 1

Views

Author

Stefano Spezia, Jan 07 2025

Keywords

Comments

In the Kalita-Saika article these numbers are called "Near harmonic divisor numbers". They give 27 terms of this sequence, missing the term 45: A379946(45, 5) = 1.

Examples

			See examples in A379945 and A379946.
		

Crossrefs

Programs

  • Mathematica
    H[n_,d_]:=n(DivisorSigma[0,n]-1)/(DivisorSigma[1,n]-n/d);kmax=200; (* A379945/A379946 *) Complement[list=Range[2,kmax],Select[list,Sum[Boole[IntegerQ[H[#,d]]],{d,Divisors[#]}]==0 &]]
Showing 1-3 of 3 results.