A379978 a(n) is the smallest positive integer which can be represented as the sum of its prime divisors in exactly n ways, or -1 if no such integer exists.
1, 2, 6, 12, 18, 24, 50, 36, 98, 48, 54, 100, 242, 72, 338, 196, 225, 96, 578, 108, 722, 30, 441, 484, 1058, 144, 250, 676, 42, 392, 1682, -1, 1922, 192, 1089, 1156, 1225, 216, 2738, 1444, 1521, 400, 66, 70, 3698, 968, 675, 2116, 4418, 78, 686, 500, 2601, 1352, 5618, 324, 3025, 784, 3249, 3364, 6962, 105, 7442, 102, 1323, 110, 4225
Offset: 0
Keywords
Examples
a(3) = 12: 12 = 2 + 2 + 2 + 2 + 2 + 2 = 2 + 2 + 2 + 3 + 3 = 3 + 3 + 3 + 3.
Programs
-
Python
# uses code/imports in A066882 from itertools import count, islice def agen(limit='float'): # generator of terms r, n = dict(), 0 for k in count(1): v = A066882(k) if v not in r: r[v] = k while n in r: yield r[n] n += 1 if k == limit: yield from (r[i] if i in r else -1 for i in range(n, max(r)+1)) return print(list(islice(agen(), 31))) # Michael S. Branicky, Jan 08 2025
Formula
If a(n) > 0, A066882(a(n)) = n.
Extensions
a(31)-a(53) from Yifan Xie, Jan 09 2025
a(54)-a(66) from Alois P. Heinz, Jan 10 2025
Comments