A380013 Continued fraction expansion of Sum_{i>=0} (-1)^i/(q(i)*q(i+1)) where q(0)=q(1)=1, q(2n+2)=q(2n+1)+q(2n), and q(2n+3)=q(2n+1)*(q(2n+2)+1).
0, 1, 1, 1, 1, 3, 1, 18, 1, 432, 1, 196992, 1, 38895676416, 1, 1512881323731695591424, 1, 2288809899755012359448064967916189926490112, 1
Offset: 0
Examples
0 + 1/(1 + 1/(1 + 1/(1 + ... ))) = 0.6087912199223083952132365...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..25
- Khalil Ayadi, Chiheb Ben Bechir, and Maher Saadaoui, Continued Fractions with Predictable Patterns and Transcendental Numbers, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.4.
Programs
-
PARI
Q(n) = {my(v=vector(n+1)); v[1]=v[2]=1; for(i=2, n, v[i+1] = if(i%2==0, v[i]+v[i-1], v[i-1]*(v[i]+1))); v} seq(n)=my(q=Q(max(2,n-2))); vector(n+1, n, if(n%2 || n<4, n>1, q[n-2])) \\ Andrew Howroyd, Jan 13 2025
Comments