cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380054 G.f. A(x) satisfies: A( A(x)^3 - A(x)^4 ) = x*A(x)^2.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 78, 234, 722, 2275, 7288, 23662, 77676, 257372, 859592, 2890838, 9781066, 33271759, 113720380, 390354292, 1345099574, 4651222825, 16134691254, 56132722306, 195807489940, 684712787166, 2399784312560, 8428460653683, 29660054158020, 104564729164209, 369263035193928
Offset: 1

Views

Author

Paul D. Hanna, Jan 27 2025

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 27*x^6 + 78*x^7 + 234*x^8 + 722*x^9 + 2275*x^10 + 7288*x^11 + 23662*x^12 + ...
where A( A(x)^3 - A(x)^4 ) = x*A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 32*x^6 + 90*x^7 + 266*x^8 + 812*x^9 + 2540*x^10 + 8094*x^11 + 26175*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 25*x^6 + 72*x^7 + 213*x^8 + 650*x^9 + 2031*x^10 + 6468*x^11 + 20911*x^12 + ...
A(x)^4 = x^4 + 4*x^5 + 14*x^6 + 44*x^7 + 137*x^8 + 428*x^9 + 1356*x^10 + 4356*x^11 + 14172*x^12 + ...
A(x)^3 - A(x)^4 = x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 28*x^7 + 76*x^8 + 222*x^9 + 675*x^10 + 2112*x^11 + 6739*x^12 + ...
where A( A(x)^3 - A(x)^4 ) = x*A(x)^2.
A(x^3 - x^4) = x^3 - x^4 + x^6 - 2*x^7 + x^8 + 2*x^9 - 6*x^10 + 6*x^11 + 2*x^12 - 16*x^13 + 24*x^14 - 6*x^15 - 46*x^16 + 100*x^17 + ...
where A( A(x^3 - x^4)/x^2 ) = x.
SPECIFIC VALUES.
A(t) = 1/2 at t = 0.2678682825020918584942447191444903207470935323567861688...
  where t = 4*A(1/16).
A(t) = 1/3 at t = 0.22799441817101628768717375008489549860256300353023...
  where t = 9*A(2/81).
A(t) = 1/4 at t = 0.18975000755140499291247741716088108267639370901968...
  where t = 16*A(3/256).
A(t) = 1/5 at t = 0.16103727770377462400703035576859030894590037720684...
  where t = 25*A(4/625).
A(1/4) = 0.40005905355209688194814753676993854678408305235431...
A(1/5) = 0.26996802842755752057486556320865534828975851625757...
A(1/6) = 0.20922644319240454092240843641248261969698502660818...
A(1/7) = 0.17175484499974821882568013761069558774534487935356...
A(1/8) = 0.14597605882140622742419332319857860821190968837477...
A(1/16) = 0.06696707062552296462356117978612258018677338308919...
  where A( 4*A(1/16) ) = 1/2.
		

Crossrefs

Cf. A268655.

Programs

  • PARI
    /* From definition A( A(x)^3 - A(x)^4 ) = x*A(x)^2 */
    {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); G=x*Ser(A); A[#A] = -Vec( subst(G, x, G^3 - G^4 )/G )[#A] ); A[n]}
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    /* Using Series Reversion of A(x^3-x^4)/x^2 */
    {a(n) = my(A=x); for(i=1, n, A = serreverse( subst(A, x, x^3 - x^4 +x^3*O(x^n))/x^2) ); polcoeff(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A( A(x)^3 - A(x)^4 ) = x*A(x)^2.
(2) A( A(x^3 - x^4)/x^2 ) = x.
(3) A( x^3*A(x)^6 - x^4*A(x)^8 ) = x^2*A(x)^7 - x^2*A(x)^8.