cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380676 G.f. A(x) satisfies 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^n)^(3*n+1).

Original entry on oeis.org

1, 2, 9, 76, 591, 5127, 46919, 444617, 4333010, 43132310, 436715297, 4483520704, 46564078707, 488335074439, 5164287656762, 55010054836724, 589682412920880, 6356441723399838, 68858811108713642, 749250723117079260, 8185098919015604558, 89739660783143322586, 987110817010576637569
Offset: 0

Views

Author

Paul D. Hanna, Feb 02 2025

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 76*x^3 + 591*x^4 + 5127*x^5 + 46919*x^6 + 444617*x^7 + 4333010*x^8 + 43132310*x^9 + 436715297*x^10 + ...
SPECIFIC VALUES.
A(t) = 3/2 at t = 0.084454810721317538501174440773777047952092460562060...
  where 2 = Sum_{n=-oo..+oo} (-t)^n * (3/2 + t^n)^(3*n+1).
A(t) = 4/3 at t = 0.077952215522932621280995556726745992779521168178442...
A(t) = 5/4 at t = 0.069865542488187377549700484712724108090103217291400...
A(t) = 6/5 at t = 0.062525019563729453209334340397151869258204650105887...
A(1/12) = 1.4451475449531942766582635648883506035661276873944...
  where 2 = Sum_{n=-oo..+oo} (-1/12)^n * (A(1/12) + (1/12)^n)^(3*n+1).
A(1/13) = 1.3197666375699291221191258833369709715040515804644...
A(1/14) = 1.2629677124586701325494126247872966004241466655536...
A(1/15) = 1.2263276036037963341062042248250428743844880153971...
A(1/16) = 1.1998529038743458677434930677034050910039899372219...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[1]); for(i=1, n, V = concat(V, 0); A = Ser(V);
    V[#V] = polcoef(2 - sum(n=-#V, #V, (-1)^n * x^n * (A + x^n)^(3*n+1) ), #V-1) ); H=A; V[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^n)^(3*n+1).
(2) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(3*n-2)) / (1 + x^n*A(x))^(3*n-1).

A380677 G.f. A(x) satisfies 1 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - A(x))^(3*n+1).

Original entry on oeis.org

1, 2, 8, 36, 198, 1128, 6837, 42690, 273960, 1792650, 11922735, 80342746, 547403208, 3764568202, 26097746670, 182183863242, 1279566641040, 9035527984360, 64109825254786, 456834687004440, 3267926616628182, 23458797921291994, 168936073477132102, 1220121029135864026, 8835737467337361482
Offset: 0

Views

Author

Paul D. Hanna, Feb 02 2025

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 198*x^4 + 1128*x^5 + 6837*x^6 + 42690*x^7 + 273960*x^8 + 1792650*x^9 + 11922735*x^10 + ...
SPECIFIC VALUES.
A(t) = 7/4 at t = 0.12654949614445186746403892264694555335923498557738...
  where 1 = Sum_{n=-oo..+oo} t^(2*n) * (t^n - 7/4)^(3*n+1).
A(t) = 5/3 at t = 0.12374694612565134762563311753154796236873902596812...
A(t) = 3/2 at t = 0.11392195456863186572686610752037791827642247932473...
A(t) = 4/3 at t = 0.09535917714046949923896929084305426642940930464927...
A(t) = 5/4 at t = 0.08098320583796566321668508295130093344916245020730...
A(1/8) = 1.69987163237671043867918157348979527169465395859405...
  where 1 = Sum_{n=-oo..+oo} (1/8)^(2*n) * ((1/8)^n - A(1/8))^(3*n+1).
A(1/9) = 1.46724009425513930419976858432180568713155056224164...
A(1/10) = 1.3665270076239843695076027726524469708778850053524...
A(1/11) = 1.3048130783240200786482939740924774873262324649207...
A(1/12) = 1.2620494023042372384830602119971826992309809007730...
A(1/14) = 1.2057100150678855865365454675611764497376238367914...
A(1/16) = 1.1698113057379453133949062841882391284824341375308...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[1]); for(i=1, n, V = concat(V, 0); A = Ser(V);
    V[#V] = polcoef(-1 + sum(n=-#V, #V, x^(2*n) * (x^n - A)^(3*n+1) ), #V-1) ); H=A; V[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - A(x))^(3*n+1).
(2) 1 = Sum_{n=-oo..+oo} x^(3*n*(n-1)) / (1 - x^n*A(x))^(3*n-1).
Showing 1-2 of 2 results.