cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380067 G.f. A(x) satisfies 0 = Sum_{n=-oo..+oo} (-x)^n * (A(x) - (-x)^n)^(3*n+1).

Original entry on oeis.org

1, 2, 9, 76, 605, 5351, 49789, 480401, 4766086, 48292018, 497690157, 5200558352, 54971657745, 586748531155, 6315126497084, 68461134239364, 746869322310992, 8193320926852194, 90327637946283912, 1000230167386765676, 11120012336000921992, 124071390413266176706, 1388854343860145268801
Offset: 0

Views

Author

Paul D. Hanna, Jan 23 2025

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 76*x^3 + 605*x^4 + 5351*x^5 + 49789*x^6 + 480401*x^7 + 4766086*x^8 + 48292018*x^9 + 497690157*x^10 + ...
SPECIFIC VALUES.
A(t) = 3/2 at t = 0.083194510328352326489147821869211901063348034386178...
A(t) = 4/3 at t = 0.077330132914732168322332648422644564090957191059466...
A(t) = 5/4 at t = 0.069536731258681190910149841234109935263075324366012...
A(t) = 6/5 at t = 0.062338368698372988520462446903734726028227564937896...
A(1/12) = 1.5173629784598497189372653851252639767246421375516...
A(1/13) = 1.3275206734003372155231166649536738395898242302762...
A(1/14) = 1.2663025820443309311247755018250914700758939519601...
A(1/15) = 1.2281465547940615875867824117423734976415492745171...
A(1/16) = 1.2009676782585721612406130744065631283860104847323...
		

Crossrefs

Cf. A380068.

Programs

  • PARI
    {a(n) = my(V=[1]); for(i=1,n, V = concat(V,0); A = Ser(V);
    V[#V] = -polcoef( sum(n=-#V,#V, (-x)^n * (A - (-x)^n)^(3*n+1) ),#V-1) ); H=A; V[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 0 = Sum_{n=-oo..+oo} (-x)^n * (A(x) - (-x)^n)^(3*n+1).
(2) 0 = Sum_{n=-oo..+oo} x^(n*(3*n-2)) / (1 - (-x)^n*A(x))^(3*n-1).

A380712 G.f. A(x) satisfies 1/2 = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(2*n) * (A(x) + x^n)^(n-1).

Original entry on oeis.org

1, 8, 84, 1040, 14220, 207416, 3163352, 49838112, 804826128, 13251624272, 221630530572, 3754763811696, 64301286803888, 1111314020855608, 19358763742909840, 339542985410593024, 5991328544544083368, 106282296849129147080, 1894330721630908390908, 33907409814314990430864
Offset: 0

Views

Author

Paul D. Hanna, Feb 21 2025

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 84*x^2 + 1040*x^3 + 14220*x^4 + 207416*x^5 + 3163352*x^6 + 49838112*x^7 + 804826128*x^8 + 13251624272*x^9 + ...
where 1/2 = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(2*n) * (A(x) + x^n)^(n-1).
SPECIFIC VALUES.
A(t) = 11/4 at t = 0.0516760605367732994895781933476882835083123366991550...
A(t) = 5/2  at t = 0.0512706205731010752236248787488564353175797944139758...
A(t) = 9/4  at t = 0.0500962358404660270765237205868976107655318520352114...
A(t) = 2 at t = 0.0477293025632112771125356682128360981725295094219849155...
A(1/20) = 2.23597314331862522198845196504910911754398888561681...
A(1/21) = 1.99138007575616089662630287849407074435849433028712...
A(1/22) = 1.84963311768563536747915607573430165080208182054100...
A(1/23) = 1.75061850078240549448668878592242454463377302943692...
A(1/24) = 1.67559723922061838865975191745342891467177127438988...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[1]); for(i=1, n, V=concat(V, 0); A = Ser(V);
    V[#V] = polcoef(2 + 4*sum(n=-#V, #V, (-1)^n * x^(2*n) * (A + x^n)^(n-1) ), #V-1) ); V[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1/2 = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(2*n) * (A(x) + x^n)^(n-1).
(2) 1/2 = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(n*(n-1)) / (1 + x^n*A(x))^(n+1).
Showing 1-2 of 2 results.