A380130 For n >= 2, let b(n) = 1 if A379784(n) is 3 mod 4, 0 if A379784(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.
1, 6, 13, 34, 87, 229, 581, 1591, 4268, 11637, 31944, 88526, 246105, 688982, 1936129, 5463517, 15470445
Offset: 1
Examples
A379784 begins 1, 5, 3, 7, 11, 19, 23, 31, 13, 17, 29, 37, ..., and the {b(n), n >= 2} sequence begins 0, 1, 1, 1, 1, 1, 1, 0, ..., whose RUNS transform is 1, 6, ...
Programs
-
Mathematica
nn = 2^19; c[_] := True; q = 0; j = r = 1; s = 4; Monitor[Rest@ Reap[Do[m = j + s; While[Set[k, SelectFirst[FactorInteger[m][[All, 1]], c]]; ! IntegerQ[k], m += s]; c[k] = False; j = k; If[# == r, q++, r = #; Sow[q]; q = 1] &[(Mod[k, 4] - 1)/2], {n, nn}] ][[-1, 1]], n] (* Michael De Vlieger, Jan 13 2025 *)
-
Python
from sympy import primefactors prev_a379784 = 1 prev_b = -1 b_run = 0 a379784_set = set([prev_a379784]) seq = [] max_seq_len = 17 while len(seq) < max_seq_len: c = prev_a379784 done = False while not done: c = c + 4 factors = primefactors(c) for factor in factors: if factor not in a379784_set: a379784_set.add(factor) if factor % 4 == 3: b = 1 else: b = 0 if prev_b >= 0: if b == prev_b: b_run += 1 else: seq.append(b_run) b_run = 1 else: b_run = 1 prev_b = b prev_a379784 = factor done = True break print(seq)