A380150 a(n) is the least k such that there exists a number 1 <= m <= k-1 and exactly n different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2.
2, 35, 385, 1872, 5670, 30030
Offset: 0
Examples
The smallest k such that there exists a number 1 <= m <= k-1 and exactly three different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2 is k = 1872: we have 1/300^2 - 1/325^2 = 1/468^2 - 1/585^2 = 1/624^2 - 1/1040^2 = 1/720^2 - 1/1872^2. See the Mathematics Stack Exchange link for more examples.
Links
- Mathematics Stack Exchange, Finding multiple ways of representing a number by a difference of inverse squares
Programs
-
PARI
f(k) = my(v=List([]), m2); for(y=1, k-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/k^2); if(m2==m2\1 && issquare(m2), listput(v, m2)))); if(#v, vecmax(vector(#v, i, sum(j=1, #v, v[i]==v[j]))), 0); \\ Gives the maximum number of pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2, where m runs through 1..k-1 lista(nn) = my(k=1); for(n=0, nn, until(f(k)==n, k++); print1(k, ", "));
Comments