A380218 Number of integer partitions of n with product n+1.
1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 4, 0, 3, 0, 3, 1, 1, 0, 6, 1, 1, 2, 3, 0, 4, 0, 6, 1, 1, 1, 8, 0, 1, 1, 6, 0, 4, 0, 3, 3, 1, 0, 11, 1, 3, 1, 3, 0, 6, 1, 6, 1, 1, 0, 10, 0, 1, 3, 10, 1, 4, 0, 3, 1, 4, 0, 15, 0, 1, 3, 3, 1, 4, 0, 11, 4, 1, 0, 10, 1, 1, 1, 6, 0, 10, 1, 3, 1, 1, 1, 18, 0, 3, 3, 8, 0, 4, 0, 6, 4, 1
Offset: 0
Keywords
Examples
The a(5) = 1 through a(15) = 4 partitions with product n+1: 32 . 421 3311 5211 . 62111 . 721111 53111111 8211111 2221 431111 441111111 3221111 4221111111 22221111111 The a(1) = 1 through a(12) = 3 factorizations with sum < n: () . . . . (2*3) . (2*4) (3*3) (2*5) . (2*6) (2*2*2) (3*4) (2*2*3)
Links
- Antti Karttunen, Table of n, a(n) for n = 0..20000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],SameQ[Times@@#,n+1]&]],{n,0,30}]
-
PARI
A380218off1(n, m=n, e=n) = if(1==n, (e>0), sumdiv(n, d, if((d>1)&&(d<=m), A380218off1(n/d, d, e-d)))); A380218off0(n) = A380218off1(1+n); \\ Antti Karttunen, Jan 28 2025
Extensions
More terms from Antti Karttunen, Jan 28 2025
Comments