cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001055 The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 9, 1, 5, 1
Offset: 1

Views

Author

Keywords

Comments

From David W. Wilson, Feb 28 2009: (Start)
By a factorization of n we mean a multiset of integers > 1 whose product is n.
For example, 6 is the product of 2 such multisets, {2, 3} and {6}, so a(6) = 2.
Similarly 8 is the product of 3 such multisets, {2, 2, 2}, {2, 4} and {8}, so a(8) = 3.
1 is the product of 1 such multiset, namely the empty multiset {}, whose product is by definition the multiplicative identity 1. Hence a(1) = 1. (End)
a(n) = # { k | A064553(k) = n }. - Reinhard Zumkeller, Sep 21 2001; Benoit Cloitre and N. J. A. Sloane, May 15 2002
Number of members of A025487 with n divisors. - Matthew Vandermast, Jul 12 2004
See sequence A162247 for a list of the factorizations of n and a program for generating the factorizations for any n. - T. D. Noe, Jun 28 2009
So a(n) gives the number of different prime signatures that can be found among the integers that have n divisors. - Michel Marcus, Nov 11 2015
For n > 0, also the number of integer partitions of n with product n, ranked by A301987. For example, the a(12) = 4 partitions are: (12), (6,2,1,1,1,1), (4,3,1,1,1,1,1), (3,2,2,1,1,1,1,1). See also A380218. In general, A379666(m,n) = a(n) for any m >= n. - Gus Wiseman, Feb 07 2025

Examples

			1: 1, a(1) = 1
2: 2, a(2) = 1
3: 3, a(3) = 1
4: 4 = 2*2, a(4) = 2
6: 6 = 2*3, a(6) = 2
8: 8 = 2*4 = 2*2*2, a(8) = 3
etc.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211).

Crossrefs

A045782 gives the range of a(n).
For records see A033833, A033834.
Row sums of A316439 (for n>1).
Cf. A096276 (partial sums).
The additive version is A000041 (integer partitions), strict A000009.
Row sums of A318950.
A002865 counts partitions into parts > 1.
A069016 counts distinct sums of factorizations.
A319000 counts partitions by product and sum, row sums A319916.
A379666 (transpose A380959) counts partitions by sum and product, without 1's A379668, strict A379671.

Programs

  • Haskell
    a001055 = (map last a066032_tabl !!) . (subtract 1)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Java
    public class MultiPart {
        public static void main(String[] argV) {
            for (int i=1;i<=100;++i) System.out.println(1+getDivisors(2,i));
        }
        public static int getDivisors(int min,int n) {
            int total = 0;
            for (int i=min;i=i) { ++total; if (n/i>i) total+=getDivisors(i,n/i); }
            return total;
        }
    } \\ Scott R. Shannon, Aug 21 2019
  • Maple
    with(numtheory):
    T := proc(n::integer, m::integer)
            local A, summe, d:
            if isprime(n) then
                    if n <= m then
                            return 1;
                    end if:
                    return 0 ;
            end if:
            A := divisors(n) minus {n, 1}:
            for d in A do
                    if d > m then
                            A := A minus {d}:
                    end if:
            end do:
            summe := add(T(n/d,d),d=A) ;
            if n <=m then
                    summe := summe + 1:
            end if:
            summe ;
    end proc:
    A001055 := n -> T(n, n):
    [seq(A001055(n), n=1..100)]; # Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; a/@Range[100] (* c[n, r] is the number of factorizations of n with factors <= r. - Dean Hickerson, Oct 28 2002 *)
    T[, 1] = T[1, ] = 1;
    T[n_, m_] := T[n, m] = DivisorSum[n, Boole[1 < # <= m] * T[n/#, #]&];
    a[n_] := T[n, n];
    a /@ Range[100] (* Jean-François Alcover, Jan 03 2020 *)
  • PARI
    /* factorizations of n with factors <= m (n,m positive integers) */
    fcnt(n,m) = {local(s);s=0;if(n == 1,s=1,fordiv(n,d,if(d > 1 & d <= m,s=s+fcnt(n/d,d))));s}
    A001055(n) = fcnt(n,n) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    \\ code using Dirichlet g.f., based on Somos's code for A007896
    {a(n) = my(A, v, w, m);
    if(
    n<1, 0,
    \\ define unit vector v = [1, 0, 0, ...] of length n
    v = vector(n, k, k==1);
    for(k=2, n,
    m = #digits(n, k) - 1;
    \\ expand 1/(1-x)^k out far enough
    A = (1 - x)^ -1 + x * O(x^m);
    \\ w = zero vector of length n
    w = vector(n);
    \\ convert A to a vector
    for(i=0, m, w[k^i] = polcoeff(A, i));
    \\ build the answer
    v = dirmul(v, w)
    );
    v[n]
    )
    };
    \\ produce the sequence
    vector(100,n,a(n)) \\ N. J. A. Sloane, May 26 2014
    
  • PARI
    v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, (k>1) && n^valuation(k,n)==k)) ); v \\ Max Alekseyev, Jul 16 2014
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n<=m else 0
        A=filter(lambda d: d<=m, divisors(n)[1:-1])
        s=sum(T(n//d, d) for d in A)
        return s + 1 if n<=m else s
    def a(n): return T(n, n)
    print([a(n) for n in range(1, 106)]) # Indranil Ghosh, Aug 19 2017
    

Formula

The asymptotic behavior of this sequence was studied by Canfield, Erdős & Pomerance and Luca, Mukhopadhyay, & Srinivas. - Jonathan Vos Post, Jul 07 2008
Dirichlet g.f.: Product_{k>=2} 1/(1 - 1/k^s).
If n = p^k for a prime p, a(n) = partitions(k) = A000041(k).
Since the sequence a(n) is the right diagonal of A066032, the given recursive formula for A066032 applies (see Maple program). - Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
a(A002110(n)) = A000110(n).
a(p^k*q^k) = A002774(k) if p and q are distinct primes. - R. J. Mathar, Jun 06 2024
a(n) = A028422(n) + 1. - Gus Wiseman, Feb 07 2025

Extensions

Incorrect assertion about asymptotic behavior deleted by N. J. A. Sloane, Jun 08 2009

A379320 Number of integer partitions of n whose product is a multiple of n + 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 2, 3, 0, 14, 0, 7, 15, 53, 0, 81, 0, 110, 61, 32, 0, 562, 170, 62, 621, 560, 0, 1400, 0, 3387, 569, 199, 1515, 7734, 0, 339, 1486, 13374, 0, 11926, 0, 8033, 27164, 913, 0, 85326, 15947, 47588, 8294, 25430, 0, 174779, 39748, 169009
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2025

Keywords

Comments

Also the number of integer partitions of n containing 1 whose product is a multiple of n. Without requiring a 1 we get A057568.

Examples

			The a(5) = 1 through a(11) = 14 partitions:
  (3,2)  .  (4,2,1)    (3,3,2)    (5,4)      .  (8,3)
            (2,2,2,1)  (3,3,1,1)  (5,2,2)       (4,4,3)
                                  (5,2,1,1)     (6,3,2)
                                                (6,4,1)
                                                (4,3,2,2)
                                                (4,3,3,1)
                                                (6,2,2,1)
                                                (3,2,2,2,2)
                                                (3,3,2,2,1)
                                                (4,3,2,1,1)
                                                (6,2,1,1,1)
                                                (3,2,2,2,1,1)
                                                (4,3,1,1,1,1)
                                                (3,2,2,1,1,1,1)
		

Crossrefs

For n instead of n+1 we have A057568 (strict A379733), ranks A326149.
These partitions are ranked by A380217 = A379319/2 = (even case of A326149)/2.
The case of equality is A380218, see also A028422 = A001055 - 1 (ranks A325041).
A000041 counts integer partitions, strict A000009.
A379666 counts partitions by sum and product.
A380219 counts partitions of n whose product is a proper multiple of n, ranks A380216.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n+1]&]],{n,0,30}]
  • PARI
    a(n) = my(nb=0); forpart(p=n, if (!(vecprod(Vec(p)) % (n+1)), nb++)); nb; \\ Michel Marcus, Jan 21 2025

A380217 Numbers whose product of prime indices is a multiple of their sum of prime indices plus one.

Original entry on oeis.org

1, 15, 42, 54, 75, 77, 95, 99, 100, 132, 182, 195, 221, 234, 245, 253, 290, 312, 315, 329, 350, 357, 405, 420, 423, 437, 450, 459, 476, 494, 510, 540, 555, 559, 560, 612, 627, 665, 715, 720, 740, 798, 816, 833, 854, 855, 858, 893, 897, 899, 979, 1026, 1064
Offset: 1

Views

Author

Gus Wiseman, Jan 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.

Examples

			The prime indices of 75 are {2,3,3}, with product 18 and sum 8, and since 18 is a multiple of 8+1, 75 is in the sequence.
The terms together with their prime indices begin:
     1: {}
    15: {2,3}
    42: {1,2,4}
    54: {1,2,2,2}
    75: {2,3,3}
    77: {4,5}
    95: {3,8}
    99: {2,2,5}
   100: {1,1,3,3}
   132: {1,1,2,5}
   182: {1,4,6}
   195: {2,3,6}
   221: {6,7}
   234: {1,2,2,6}
   245: {3,4,4}
		

Crossrefs

The case of equality is A325041, counted by A380218 = A028422 except n=3.
Without "plus one" we get A326149, counted by A057568, see A379733, A379734, A379735.
Double all terms to get A379319.
Partitions of this type are counted by A379320.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Divisible[Times@@prix[#],1+Total[prix[#]]]&]
  • PARI
    vpind(n)=my(v=List(), f=factor(n)); for(i=1, #f~, for(j=1, f[i, 2], listput(v, primepi(f[i, 1])))); Vec(v); \\ A112798
    isok(k) = my(vind = vpind(k)); (vecprod(vind) % (vecsum(vind)+1)) == 0; \\ Michel Marcus, Jan 21 2025

Formula

a(n) = A379319(n)/2.

A380219 Number of integer partitions of n whose product is a proper multiple of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 18, 0, 9, 21, 75, 0, 109, 0, 146, 83, 43, 0, 730, 224, 82, 806, 722, 0, 1782, 0, 4254, 733, 258, 1923, 9558, 0, 435, 1875, 16395, 0, 14625, 0, 9857, 33053, 1150, 0, 102070, 19391, 57326, 10157, 30702, 0, 207699, 47925, 200645
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2025

Keywords

Examples

			The partition y = (4,3,3,2) has product 72, which is a multiple of 12, so y is counted under a(12).
The a(8) = 3 through a(14) = 9 partitions:
  (44)    (63)    (532)   .  (66)       .  (743)
  (422)   (333)   (541)      (543)         (752)
  (2222)  (3321)  (5221)     (642)         (761)
                             (831)         (7322)
                             (4332)        (7421)
                             (4431)        (72221)
                             (5322)        (73211)
                             (6222)        (74111)
                             (6321)        (722111)
                             (6411)
                             (33222)
                             (43221)
                             (43311)
                             (62211)
                             (322221)
                             (332211)
                             (432111)
                             (3222111)
		

Crossrefs

The non-proper version is A057568, case of equality A001055.
The case of strict partitions is A379733 - 1.
The case of partitions without 1's is A379734 - 1.
These partitions are ranked by A380216.
A000041 counts integer partitions, strict A000009.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568 (strict A379733), ranks A326149, see A379319, A380217.
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n]&&UnsameQ[Times@@#,n]&]],{n,30}]
  • PARI
    a(n) = my(nb=0); forpart(p=n, my(vp=vecprod(Vec(p))); if (!(vp%n) && (vp>n), nb++)); nb; \\ Michel Marcus, Jan 22 2025

Formula

a(n) = A057568(n) - A001055(n).

A380221 Number of strict integer partitions of n containing 1 whose product of parts is a multiple of n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 3, 3, 0, 4, 0, 9, 6, 4, 0, 22, 5, 6, 15, 28, 0, 54, 0, 49, 30, 14, 57, 134, 0, 22, 58, 219, 0, 242, 0, 180, 349, 44, 0, 722, 113, 369, 196, 404, 0, 994, 556, 1363, 338, 111, 0, 3016, 0, 150, 2569, 3150, 1485, 2815, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2025

Keywords

Comments

Also the number of strict integer partitions of n - 1 not containing 1 whose product of parts is a multiple of n. These are strict integer factorizations of multiples of n summing to n - 1.

Examples

			The a(6) = 1 through a(16) = 3 partitions:
  (3,2,1) . . . (5,4,1) . (8,3,1)   . (7,6,1)   (9,5,1)     (8,4,3,1)
                          (6,3,2,1)   (7,4,2,1) (6,5,3,1)   (8,5,2,1)
                                                (5,4,3,2,1) (6,4,3,2,1)
		

Crossrefs

Positions of 0 after 9 appear to be the prime numbers A000040.
The non-strict version is A379320 shifted right, ranks A380217 = A379319/2.
Not requiring 1 gives A379733.
For n instead of n+1 we have A379735 shifted left, non-strict A379734.
Partitions of this type are ranked by A379845.
The case of equality for non-strict partitions is A380218 shifted left.
A000041 counts integer partitions, strict A000009.
A379666 counts partitions by sum and product.
A380219 counts partitions of n whose product is a proper multiple of n, ranks A380216.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[#,1]&&UnsameQ@@#&&Divisible[Times@@#,n]&]],{n,30}]

A380411 Number of integer partitions of n such that the product of parts is greater than the sum of primes indexed by the parts.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 4, 8, 14, 23, 39, 58, 85, 121, 168, 228, 308, 404, 533, 691, 892, 1136, 1449, 1820, 2291, 2857, 3553, 4387, 5418, 6646, 8144, 9931, 12086, 14649, 17733, 21379, 25747, 30905, 37049, 44282, 52863, 62936, 74841, 88792, 105202, 124387
Offset: 0

Views

Author

Gus Wiseman, Jan 26 2025

Keywords

Examples

			The partition y = (4,3,2) has product of parts 4*3*2 = 24 and sum of corresponding primes 7+5+3 = 15, so y is counted under a(9).
The a(0) = 1 through a(10) = 14 partitions:
  ()  .  .  .  .  .  .  (322)  (44)    (54)     (55)
                               (332)   (333)    (64)
                               (422)   (432)    (433)
                               (2222)  (522)    (442)
                                       (3222)   (532)
                                       (3321)   (622)
                                       (4221)   (3322)
                                       (22221)  (3331)
                                                (4222)
                                                (4321)
                                                (5221)
                                                (22222)
                                                (32221)
                                                (33211)
		

Crossrefs

For parts instead of primes on the RHS we have A114324.
The version for divisibility instead of inequality is A330954.
The version for equality is A331383, ranks A331384.
These partitions are ranked by A380410.
A000040 lists the primes, differences A001223.
A000041 counts integer partitions, strict A000009.
A001414 gives sum of prime factors.
A003963 gives product of prime indices
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568 (strict A379733), ranks A326149, see A379319, A380217.
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@#>Plus@@Prime/@#&]],{n,0,30}]

A380343 Number of strict integer partitions of n whose product of parts is a multiple of n + 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 5, 5, 0, 8, 0, 15, 11, 8, 0, 42, 8, 12, 26, 49, 0, 100, 0, 90, 56, 27, 105, 246, 0, 41, 108, 414, 0, 450, 0, 332, 651, 81, 0, 1341, 210, 693, 366, 754, 0, 1869, 1044, 2579, 634, 206, 0, 5695, 0, 278, 4850, 5927, 2802
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2025

Keywords

Examples

			The a(5) = 1 through a(17) = 8 partitions (A=10, C=12):
  32  .  421  .  54  .  83   .  76    95    843   .  98
                        632     742   653   852      863
                        641     7321  A31   861      962
                                      5432  6432     C32
                                      6521  8421     7631
                                                     9431
                                                     9521
                                                     65321
		

Crossrefs

The non-strict version is A379320, ranked by A380217 = A379319/2.
For n instead of n+1 we have A379733, non-strict A057568.
The case of equality for non-strict partitions is A380218.
A000041 counts integer partitions, strict A000009.
A379666 counts partitions by sum and product.
A380219 counts partitions of n whose product is a proper multiple of n, ranks A380216.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Times@@#,n+1]&]],{n,0,30}]
Showing 1-7 of 7 results.