A380219 Number of integer partitions of n whose product is a proper multiple of n.
0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 18, 0, 9, 21, 75, 0, 109, 0, 146, 83, 43, 0, 730, 224, 82, 806, 722, 0, 1782, 0, 4254, 733, 258, 1923, 9558, 0, 435, 1875, 16395, 0, 14625, 0, 9857, 33053, 1150, 0, 102070, 19391, 57326, 10157, 30702, 0, 207699, 47925, 200645
Offset: 1
Keywords
Examples
The partition y = (4,3,3,2) has product 72, which is a multiple of 12, so y is counted under a(12). The a(8) = 3 through a(14) = 9 partitions: (44) (63) (532) . (66) . (743) (422) (333) (541) (543) (752) (2222) (3321) (5221) (642) (761) (831) (7322) (4332) (7421) (4431) (72221) (5322) (73211) (6222) (74111) (6321) (722111) (6411) (33222) (43221) (43311) (62211) (322221) (332211) (432111) (3222111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n]&&UnsameQ[Times@@#,n]&]],{n,30}]
-
PARI
a(n) = my(nb=0); forpart(p=n, my(vp=vecprod(Vec(p))); if (!(vp%n) && (vp>n), nb++)); nb; \\ Michel Marcus, Jan 22 2025