A380229
Expansion of e.g.f. exp( exp( (exp(3*x)-1)/3 ) - 1 ).
Original entry on oeis.org
1, 1, 5, 32, 258, 2518, 28733, 374188, 5465748, 88364877, 1564525351, 30076618014, 623362069525, 13846300701886, 327952448024833, 8246654495001815, 219323630123687561, 6148716950721967215, 181171993247893669702, 5595764936875993028696, 180742802515427561158060, 6092097271225726649472555
Offset: 0
A383206
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * Stirling2(j,k).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 11, 9, 1, 0, 49, 71, 18, 1, 0, 257, 575, 245, 30, 1, 0, 1539, 4957, 3120, 625, 45, 1, 0, 10299, 45829, 39697, 11480, 1330, 63, 1, 0, 75905, 454015, 517790, 201677, 33250, 2506, 84, 1, 0, 609441, 4804191, 6999785, 3513762, 770007, 81774, 4326, 108, 1
Offset: 0
Triangle starts:
1;
0, 1;
0, 3, 1;
0, 11, 9, 1;
0, 49, 71, 18, 1;
0, 257, 575, 245, 30, 1;
0, 1539, 4957, 3120, 625, 45, 1;
0, 10299, 45829, 39697, 11480, 1330, 63, 1;
...
-
T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*stirling(j, k, 2));
Showing 1-2 of 2 results.