cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380332 a(n) = number of primes between n^2 and n^4.

Original entry on oeis.org

0, 0, 4, 18, 48, 105, 199, 342, 546, 825, 1204, 1685, 2300, 3068, 4008, 5143, 6488, 8091, 9956, 12115, 14605, 17446, 20676, 24322, 28441, 33004, 38114, 43805, 50066, 56951, 64529, 72830, 81853, 91751, 102397, 114004, 126516, 140016, 154559, 170186, 186883, 204880, 224009, 244527, 266283, 289506, 314148, 340292, 368114, 397407
Offset: 0

Views

Author

Clark Kimberling, Jan 26 2025

Keywords

Comments

p(2) = 4 because there are 4 primes between 4 and 16.

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[n^4] - PrimePi[n^2], {n, 0, 60}]
  • PARI
    a(n) = primepi(n^4) - primepi(n^2); \\ Michel Marcus, Jan 27 2025
    
  • Python
    from sympy import primepi
    def A380332(n): return -primepi(m:=n**2)+primepi(m**2) # Chai Wah Wu, Jan 27 2025

Formula

a(n) = PrimePi(n^4) - PrimePi(n^2).