A380361 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of Halin graphs on n unlabeled nodes with circuit rank k up to orientation-preserving homeomorphisms, 3 <= k <= n-1.
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 4, 2, 1, 0, 0, 0, 4, 8, 3, 1, 0, 0, 0, 0, 12, 16, 3, 1, 0, 0, 0, 0, 6, 40, 25, 4, 1, 0, 0, 0, 0, 0, 43, 93, 40, 4, 1, 0, 0, 0, 0, 0, 19, 165, 197, 56, 5, 1, 0, 0, 0, 0, 0, 0, 143, 505, 364, 80, 5, 1
Offset: 4
Examples
Triangle begins: n\k| 3 4 5 6 7 8 9 10 11 12 13 -----+----------------------------------------- 4 | 1; 5 | 0, 1; 6 | 0, 1, 1; 7 | 0, 0, 1, 1; 8 | 0, 0, 1, 2, 1; 9 | 0, 0, 0, 4, 2, 1; 10 | 0, 0, 0, 4, 8, 3, 1; 11 | 0, 0, 0, 0, 12, 16, 3, 1; 12 | 0, 0, 0, 0, 6, 40, 25, 4, 1; 13 | 0, 0, 0, 0, 0, 43, 93, 40, 4, 1; 14 | 0, 0, 0, 0, 0, 19, 165, 197, 56, 5, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..1278 (first 50 rows)
- Eric Weisstein's World of Mathematics, Halin Graph.
- Wikipedia, Circuit rank.
- Wikipedia, Halin graph.
Crossrefs
Programs
Formula
T(n,k) = A295633(k, n-k).
Comments