A380362 Triangle read by rows: T(n,k) is the number of Halin graphs on n unlabeled nodes with circuit rank k, 3 <= k <= n-1.
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 3, 2, 1, 0, 0, 0, 3, 6, 3, 1, 0, 0, 0, 0, 7, 11, 3, 1, 0, 0, 0, 0, 4, 24, 17, 4, 1, 0, 0, 0, 0, 0, 24, 51, 26, 4, 1, 0, 0, 0, 0, 0, 12, 89, 109, 36, 5, 1, 0, 0, 0, 0, 0, 0, 74, 265, 194, 50, 5, 1, 0, 0, 0, 0, 0, 0, 27, 371, 660, 345, 65, 6, 1
Offset: 4
Examples
Triangle begins: n\k| 3 4 5 6 7 8 9 10 11 12 13 -----+---------------------------------------- 4 | 1; 5 | 0, 1; 6 | 0, 1, 1; 7 | 0, 0, 1, 1; 8 | 0, 0, 1, 2, 1; 9 | 0, 0, 0, 3, 2, 1; 10 | 0, 0, 0, 3, 6, 3, 1; 11 | 0, 0, 0, 0, 7, 11, 3, 1; 12 | 0, 0, 0, 0, 4, 24, 17, 4, 1; 13 | 0, 0, 0, 0, 0, 24, 51, 26, 4, 1; 14 | 0, 0, 0, 0, 0, 12, 89, 109, 36, 5, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..1278 (first 50 rows)
- Andrew Howroyd, Formulas and PARI Program, Jan 2025.
- Eric Weisstein's World of Mathematics, Halin Graph.
- Wikipedia, Circuit rank.
- Wikipedia, Halin graph.
Crossrefs
Programs
-
PARI
\\ See PARI Link for program code. { my(T=A380361rows(12)); for(i=1, #T, print(T[i])) }
Formula
T(n,k) = A295634(k, n-k).
Comments