A380363 Triangle read by rows: T(n,k) is the number of linear trees with n vertices and k vertices of degree >= 3, 0 <= k <= max(0, floor(n/2)-1).
1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 3, 1, 11, 10, 1, 1, 17, 24, 5, 1, 25, 56, 22, 1, 1, 36, 114, 74, 6, 1, 50, 224, 219, 37, 1, 1, 70, 411, 576, 158, 8, 1, 94, 733, 1394, 591, 58, 1, 1, 127, 1252, 3150, 1896, 304, 9, 1, 168, 2091, 6733, 5537, 1342, 82, 1
Offset: 0
Examples
Triangle begins: 1; 1; 1; 1; 1, 1; 1, 2; 1, 4, 1; 1, 7, 3; 1, 11, 10, 1; 1, 17, 24, 5; 1, 25, 56, 22, 1; 1, 36, 114, 74, 6; 1, 50, 224, 219, 37, 1; 1, 70, 411, 576, 158, 8; 1, 94, 733, 1394, 591, 58, 1; 1, 127, 1252, 3150, 1896, 304, 9; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2501 (rows 0..100)
- Tanay Wakhare, Eric Wityk, and Charles R. Johnson, The proportion of trees that are linear, Discrete Mathematics 343.10 (2020): 112008. Also Corrigendum and preprint arXiv:1901.08502. See Table 1.
- Eric Weisstein's World of Mathematics, Lobster Graph.
Comments