cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380365 Number of sensed combinatorial maps with n edges and without faces of degree 1.

Original entry on oeis.org

1, 1, 3, 11, 50, 365, 3782, 47935, 718202, 12245679, 233541489, 4920828395, 113495838798, 2843930973805, 76932818058660, 2234631397864123, 69368177318863458, 2291843543825994905, 80296746074069588380, 2973657775519950500203, 116065360915389313936460
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Crossrefs

Cf. A006388 (planar), A170946, A380364 (rooted), A380366 (unsensed).

Programs

  • PARI
    InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))}
    b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))}
    C(k,r)={sum(i=0, r, (-1)^i/i!/k^i)}
    S(n,k)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)*C(k,r)), O(x*x^n))}
    seq(n)={concat([1], InvEulerT(Vec(-1 + prod(k=1, 2*n, S(n,k)))))}