A380401 Triangle read by rows: T(n,k) is the number of necklace permutations of a multiset whose multiplicities are given by the k-th partition of n in graded reflected lexicographic order.
1, 1, 1, 2, 1, 1, 6, 3, 2, 1, 1, 24, 12, 6, 4, 2, 1, 1, 120, 60, 30, 16, 20, 10, 4, 5, 3, 1, 1, 720, 360, 180, 90, 120, 60, 30, 20, 30, 15, 5, 6, 3, 1, 1, 5040, 2520, 1260, 630, 318, 840, 420, 210, 140, 70, 210, 105, 54, 35, 10, 42, 21, 7, 7, 4, 1, 1, 40320, 20160, 10080, 5040, 2520, 6720, 3360, 1680, 840, 1120, 560, 188, 1680, 840, 420, 280, 140, 70, 336, 168, 84, 56, 14, 56, 28, 10, 8, 4, 1, 1
Offset: 1
Examples
The ordering of the partitions used here is graded reflected lexicographic illustrated below with n=5: 1,1,1,1,1 => 24 1,1,1,2 => 12 1,2,2 => 6 1,1,3 => 4 2,3 => 2 1,4 => 1 5 => 1 Table begins: 1 1,1 2,1,1 6,3,2,1,1 24,12,6,4,2,1,1
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, pages 36-37, 42-43.
Links
- Math StackExchange, Marko Riedel et. al, Free circular permutations
- Marko Riedel, Maple code for sequence by PET and closed form.
Crossrefs
Programs
-
PARI
C(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, eulerphi(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n} Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)]))} \\ Andrew Howroyd, Jan 23 2025
Comments