A380403 Number of integers k that are neither squarefree nor prime powers (in A126706) and that do not exceed primorial A002110(n).
0, 0, 0, 5, 67, 871, 11693, 199976, 3802411, 87466676, 2536583089, 78634293907, 2909470106300, 119288281458176, 5129396144497507, 241081619059363357, 12777325812023481231, 753862222923258499554
Offset: 0
Examples
Let s = A126706 and let P(n) = A002110(n). a(0..2) = 0 since P(0..2) = {1, 2, 6}, and the smallest number in s is 12. a(3) = 5 since P(3) = 30, and the set s(1..6) = {12, 18, 20, 24, 28} contains k <= 30. a(4) = 67 since P(4) = 210, and the set s(1..67) = {12, 18, 20, ..., 207, 208} contains k <= 210, etc.
Programs
-
Mathematica
Table[# - Sum[PrimePi@ Floor[#^(1/k)], {k, 2, Floor[Log2[#]]}] - Sum[MoebiusMu[k]*Floor[#/(k^2)], {k, Floor[Sqrt[#]]}] &[Product[Prime[i], {i, n}]], {n, 0, 12}]
-
PARI
a(n) = my(q=vecprod(primes(n))); q - sum(k=2, logint(q, 2), primepi(sqrtnint(q, k))) - sum(k=1, sqrtint(q), q\k^2*moebius(k)); \\ Jinyuan Wang, Feb 25 2025
-
Python
from math import isqrt from sympy import primorial, primepi, integer_nthroot, mobius def A380403(n): if n == 0: return 0 m = primorial(n) return int(-sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length()))-sum(mobius(k)*(m//k**2) for k in range(2, isqrt(m)+1))) # Chai Wah Wu, Jan 24 2025
Formula
Extensions
Offset changed to 0 by Jinyuan Wang, Jan 24 2025
a(16) from Chai Wah Wu, Jan 24 2025
a(17) from Chai Wah Wu, Jan 25 2025