A380448 Least primes which can be represented as the sum of distinct positive cubes in exactly n ways, or 0 if no such prime exists.
73, 757, 953, 2521, 1801, 3257, 2953, 4013, 4139, 4789, 5347, 4481, 5669, 4663, 6427, 6659, 5867, 6301, 6841, 7867, 7687, 7741, 10169, 7057, 7723, 7561, 9631, 8443, 8191, 8387, 9883, 10079, 10313, 10891, 10729, 10009, 9109, 10711, 9829, 11161, 10457, 12547, 11699, 10513, 10333, 11159, 13007
Offset: 1
Keywords
Examples
a(4) = 2521 because 2521 = 4^3 + 9^3 + 12^3 = 1^3 + 4^3 + 5^3 + 10^3 + 11^3= 1^3 +4^3+ 6^3 + 8^3 + 12^3 =4^3 + 6^3 + 8^3 + 9^3 + 10^3 and 2521 is the least prime that can be written as the sum of distinct positive cubes in 4 different ways.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 233 terms from Zhining Yang)
Programs
-
Mathematica
s = CoefficientList[Series[Product[(1 + x^(r^3)), {r, 20}], {x, 0, 8000}], x]; Table[SelectFirst[Flatten@Position[s, k] - 1, PrimeQ], {k, 20}]
Comments