A380487 Numbers such that the sum of prime factors without repetition divides the product of prime factors without repetition and each division yields a greater quotient.
2, 30, 70, 105, 231, 627, 805, 1122, 2730, 3570, 8778, 9282, 10626, 15015, 24738, 24882, 31746, 33495, 33915, 44330, 45885, 49335, 51051, 62985, 72930, 95095, 106590, 132990, 145145, 156009, 170170, 222870, 230945, 274505, 290598, 329406, 335478, 418285, 449995
Offset: 1
Keywords
Examples
2 is a term because sopf(2)|rad(2) = 2|2. 30 is a term because sopf(30)|rad(30) = 10|30. 70 is a term because sopf(70)|rad(70) = 14|70.
Links
- Robert Israel, Table of n, a(n) for n = 1..168
Programs
-
Maple
f:= proc(n,m) local q,S; S:= numtheory:-factorset(n); q:= convert(S,`*`)/convert(S,`+`); if q::integer and q > m then q else 0 fi; end proc: m:= 0: R:= NULL: count:= 0: for n from 2 while count < 50 do v:= f(n,m); if v > 0 then m:= v; R:= R, n; count:= count+1; fi; od: R; # Robert Israel, Apr 30 2025
-
Mathematica
s={};q=0;Do[pf=Times@@First/@FactorInteger[n];sf=Total[First/@FactorInteger[n]];If[Divisible[pf,sf]&&pf/sf>q,AppendTo[s,n];q=pf/sf],{n,2,449995}];s (* James C. McMahon, Apr 03 2025 *)
-
PARI
lista(nn) = my(m=0, list=List()); for (n=2, nn, my(f=factor(n)[,1], q=factorback(f)/vecsum(f)); if ((denominator(q) == 1) && (q>m), listput(list, n); m=q);); Vec(list); \\ Michel Marcus, Mar 29 2025
-
Sage
def sopf(n): return sum(set(prime_factors(n))) def rad(n): rad = 1 for p in set(prime_factors(n)): rad *= p return rad def output(limit=39): results = [] n = 2 result = 0 while len(results) < limit: sopf_n = sopf(n) rad_n = rad(n) if rad_n % sopf_n == 0 and result < rad_n / sopf_n: results.append(n) result = rad_n / sopf_n print(n, end=', ') n += 1 return results output()
Comments