A380581 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^4) is the g.f. of A023873.
1, 1, 35, 397, 5075, 67126, 897911, 12144945, 165880531, 2280262825, 31522512910, 437730330357, 6101414176535, 85317965576325, 1196299277106675, 16813979471920522, 236812229975204563, 3341448338530887015, 47225228515043980715, 668417245247747877735, 9473101371364286661950, 134416752857691389968377, 1909344928242571795580255
Offset: 0
Examples
Examples of supercongruences: a(7) - a(1) = 12144945 - 1 = (2^4)*(7^3)*2213 = 0 (mod 7^3) a(3*7) - a(3) = 134416752857691389968377 - 397 = (2^2)*5*(7^3)*17*223*5168630662682423 == 0 (mod 7^3) a(2*11) - a(2) = 1909344928242571795580255 - 35 = (2^2)*(3^4)*5*7*(11^4)*17*23* 29411951377843 == 0 (mod 11^4)
References
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
Programs
-
Maple
with(numtheory): G(x) := series(exp(add(sigma[5](k)*x^k/k, k = 1..22)), x, 23): seq(coeftayl(G(x)^n, x = 0, n), n = 0..22);
Formula
a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_5(k)*x^k/k).
Comments