A380583 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^(2*k))/(1 - x^k))^(k^2).
1, 1, 13, 82, 665, 5026, 40180, 319677, 2583401, 20965150, 171276238, 1405008925, 11571476120, 95601033542, 792038546739, 6577523807332, 54737967873385, 456368114019558, 3811136362823056, 31873576059000827, 266919720010452190, 2237944814420991135, 18784073017650350445
Offset: 0
Examples
Examples of supercongruences: a(7) - a(1) = 319677 - 1 = (2^2)*(7^3)*233 == 0 (mod 7^3) a(11) - a(1) = 1405008925 - 1 = (2^2)*3*(11^5)*727 == 0 (mod 11^5) a(22) - a(2) = 18784073017650350445 - 13 = (2^5)*(11^3)*222773*1979699077 == 0 (mod 11^3)
Programs
-
Maple
G(x) := series(mul( ( (1 + x^(2*k))/(1 - x^k) )^(k^2), k = 1..22), x, 23): a:= n-> coeftayl(G(x)^n, x = 0, n): seq(a(n), n = 0..22);
Comments