cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380631 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes with k cycles and each node a member of exactly one cycle, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 2, 0, 1, 3, 5, 0, 1, 3, 10, 0, 1, 4, 17, 6, 0, 1, 4, 26, 18, 0, 1, 5, 38, 51, 0, 1, 5, 52, 106, 18, 0, 1, 6, 70, 205, 87, 0, 1, 6, 90, 350, 286, 0, 1, 7, 115, 579, 741, 66, 0, 1, 7, 142, 887, 1660, 406
Offset: 0

Views

Author

Andrew Howroyd, Feb 24 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Examples

			Triangle begins:
  1;
  0;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2,  2;
  0, 1, 3,  5;
  0, 1, 3, 10;
  0, 1, 4, 17,   6;
  0, 1, 4, 26,  18;
  0, 1, 5, 38,  51;
  0, 1, 5, 52, 106, 18;
  ...
		

Crossrefs

Columns 0..2 are A000007, A000012(n+3), A008619(n+6).
Row sums are A380632.

Programs

  • PARI
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x,y], [x^d,y^d])}
    R(n,y)={my(g = O(x^3)); for(n=1, (n-1)\2, my(p=x*EulerMTS(g), p2=raise(p,2)); g=p*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g}
    G(n,y=1)={my(g=R(n,y), p = x*EulerMTS(g) + O(x*x^n));
      my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 );
      my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) );
      1 + (raise(g,2) - g^2 + y*(r + c - 2*p - p^2 - raise(p,2)))/2 }
    T(n)={[Vecrev(p) | p<-Vec(G(n,y))]}
    { my(A=T(15)); for(i=1, #A, print(A[i])) }

Formula

T(3*n, n) = A380634(n).

A380805 Number of unlabeled simple connected graphs with n nodes of degree at most 3 and each node a member of exactly one cycle.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 7, 10, 18, 27, 49, 81, 147, 256, 476, 858, 1612, 2991, 5676, 10729, 20575, 39423, 76232, 147602, 287518, 561195, 1100190, 2161552, 4261059, 8418035, 16675006, 33098322, 65844566, 131233923, 262066375, 524224509, 1050414569
Offset: 0

Views

Author

Gordon Hamilton, Feb 23 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Crossrefs

Row sums of A380633.
Cf. A000083, A001349, A317722, A380632 (nodes of any degree).

Programs

Extensions

a(13) onwards from Andrew Howroyd, Feb 24 2025

A381468 Number of simple connected graphs on n unlabeled nodes with no node a member of more than one cycle.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 20, 48, 133, 374, 1124, 3439, 10923, 35245, 116128, 387729, 1312038, 4485906, 15486546, 53900520, 188998450, 667062919, 2368440477, 8454560144, 30328595227, 109285433191, 395425965732, 1436219868659, 5234881134074, 19143123415166, 70216752517419
Offset: 0

Views

Author

Andrew Howroyd, Feb 24 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Crossrefs

Row sums of A381467.
Cf. A000083, A317722 (with 2-cycles), A380632, A380805.

Programs

  • PARI
    Vec(G(31,1)) \\ G() defined in A381467.
Showing 1-3 of 3 results.