A380634 Number of unlabeled 2,3 cacti (triangular cacti with bridges) with n triangles and every node contained in exactly one triangle.
1, 1, 1, 2, 6, 18, 66, 265, 1140, 5186, 24588, 120062, 600884, 3066490, 15907266, 83665520, 445317808, 2394928214, 12997988041, 71116953074, 391931826699, 2174062325068, 12130745830640, 68049392678632, 383601371168527, 2172093593344465, 12349917974708867
Offset: 0
Keywords
Examples
The a(3) = 2 cactus graphs are: o o o o o---o o / \ / \ / \ / \ \ / / \ o---o---o---o---o---o o---o---o---o---o
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Wikipedia, Cactus graph.
- Index entries for sequences related to cacti.
Programs
-
PARI
\\ here R(n) gives A287891 as g.f. EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} raise(p,d) = {my(n=serprec(p,x)-1); subst(p + O(x^(n\d+1)), x, x^d)} R(n)={my(p=1+O(x)); for(n=1, n, p = 1 + x*Ser(EulerT(Vec(p*(p^2 + raise(p,2))/2)))); p} seq(n)={ my(p=R(n-1), g=p*(p^2 + raise(p,2))/2); Vec(1 + x*(x*(raise(g,2) - g^2) + p*raise(p,2) + (p^3 + 2*raise(p,3))/3)/2) }
Comments