cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380634 Number of unlabeled 2,3 cacti (triangular cacti with bridges) with n triangles and every node contained in exactly one triangle.

Original entry on oeis.org

1, 1, 1, 2, 6, 18, 66, 265, 1140, 5186, 24588, 120062, 600884, 3066490, 15907266, 83665520, 445317808, 2394928214, 12997988041, 71116953074, 391931826699, 2174062325068, 12130745830640, 68049392678632, 383601371168527, 2172093593344465, 12349917974708867
Offset: 0

Views

Author

Andrew Howroyd, Feb 24 2025

Keywords

Comments

The number of vertices is 3*n and for n > 0, the number of bridges is n-1.

Examples

			The a(3) = 2 cactus graphs are:
    o       o       o        o   o---o   o
   / \     / \     / \      / \   \ /   / \
  o---o---o---o---o---o    o---o---o---o---o
		

Crossrefs

Programs

  • PARI
    \\ here R(n) gives A287891 as g.f.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    raise(p,d) = {my(n=serprec(p,x)-1); subst(p + O(x^(n\d+1)), x, x^d)}
    R(n)={my(p=1+O(x)); for(n=1, n, p = 1 + x*Ser(EulerT(Vec(p*(p^2 + raise(p,2))/2)))); p}
    seq(n)={ my(p=R(n-1), g=p*(p^2 + raise(p,2))/2); Vec(1 + x*(x*(raise(g,2) - g^2) + p*raise(p,2) + (p^3 + 2*raise(p,3))/3)/2) }

Formula

a(n) = A380631(3*n,n) = A381467(3*n,n).