cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380631 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes with k cycles and each node a member of exactly one cycle, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 2, 0, 1, 3, 5, 0, 1, 3, 10, 0, 1, 4, 17, 6, 0, 1, 4, 26, 18, 0, 1, 5, 38, 51, 0, 1, 5, 52, 106, 18, 0, 1, 6, 70, 205, 87, 0, 1, 6, 90, 350, 286, 0, 1, 7, 115, 579, 741, 66, 0, 1, 7, 142, 887, 1660, 406
Offset: 0

Views

Author

Andrew Howroyd, Feb 24 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Examples

			Triangle begins:
  1;
  0;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2,  2;
  0, 1, 3,  5;
  0, 1, 3, 10;
  0, 1, 4, 17,   6;
  0, 1, 4, 26,  18;
  0, 1, 5, 38,  51;
  0, 1, 5, 52, 106, 18;
  ...
		

Crossrefs

Columns 0..2 are A000007, A000012(n+3), A008619(n+6).
Row sums are A380632.

Programs

  • PARI
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x,y], [x^d,y^d])}
    R(n,y)={my(g = O(x^3)); for(n=1, (n-1)\2, my(p=x*EulerMTS(g), p2=raise(p,2)); g=p*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g}
    G(n,y=1)={my(g=R(n,y), p = x*EulerMTS(g) + O(x*x^n));
      my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 );
      my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) );
      1 + (raise(g,2) - g^2 + y*(r + c - 2*p - p^2 - raise(p,2)))/2 }
    T(n)={[Vecrev(p) | p<-Vec(G(n,y))]}
    { my(A=T(15)); for(i=1, #A, print(A[i])) }

Formula

T(3*n, n) = A380634(n).

A381467 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes with k cycles and no node a member of more than one cycle, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 5, 6, 13, 1, 11, 33, 4, 23, 89, 21, 47, 240, 85, 2, 106, 657, 345, 16, 235, 1806, 1289, 109, 551, 5026, 4713, 627, 6, 1301, 13999, 16622, 3259, 64, 3159, 39260, 57535, 15576, 598, 7741, 110381, 195212, 69983, 4394, 18, 19320, 311465, 653318, 299354, 28286, 295
Offset: 0

Views

Author

Andrew Howroyd, Feb 24 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Examples

			Triangle begins:
     1;
     1;
     1;
     1,     1;
     2,     2;
     3,     5;
     6,    13,     1;
    11,    33,     4;
    23,    89,    21;
    47,   240,    85,     2;
   106,   657,   345,    16;
   235,  1806,  1289,   109;
   551,  5026,  4713,   627,   6;
  1301, 13999, 16622,  3259,  64;
  3159, 39260, 57535, 15576, 598;
  ...
		

Crossrefs

Row sums are A381468.
Columns k=0..2 are A000055, A001429, A381470.

Programs

  • PARI
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d,y^d])}
    R(n,y)={my(g=x+O(x^2)); for(n=2, n, my(p=x*EulerMTS(g), p2=raise(p,2)); g=p + p*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g}
    G(n,y=1)={my(g=R(n,y), p = x*EulerMTS(g) + O(x*x^n));
      my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 );
      my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) );
      1 + p + (raise(g,2) - g^2 + y*(r + c - 2*p - p^2 - raise(p,2)))/2 }
    T(n)={[Vecrev(p) | p<-Vec(G(n,y))]}
    {my(A=T(15)); for(i=1, #A, print(A[i]))}

Formula

T(3*n, n) = A380634(n).

A381469 Number of unlabeled 2,3 cacti (triangular cacti with bridges) rooted at a triangle with n triangles and every node contained in exactly one triangle.

Original entry on oeis.org

0, 1, 1, 4, 15, 66, 304, 1503, 7622, 39856, 212447, 1151614, 6324924, 35127396, 196917025, 1112776860, 6332114208, 36252066562, 208665030299, 1206819559836, 7009605269315, 40871341270810, 239144296550695, 1403719120877546, 8263431521645830, 48774908707685849
Offset: 0

Views

Author

Andrew Howroyd, Feb 25 2025

Keywords

Comments

The number of vertices is 3*n and for n > 0, the number of bridges is n-1.

Crossrefs

Cf. A287891, A380634 (unrooted).

Programs

  • PARI
    \\ here R(n) gives A287891 as g.f.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    raise(p,d) = {my(n=serprec(p,x)-1); subst(p + O(x^(n\d+1)), x, x^d)}
    R(n)={my(p=1+O(x)); for(n=1, n, p = 1 + x*Ser(EulerT(Vec(p*(p^2 + raise(p,2))/2)))); p}
    seq(n)={ my(p=R(n-1)); Vec(x*(p^3 + 3*p*raise(p,2) + 2*raise(p,3))/6 + O(x*x^n), -n-1) }

Formula

G.f.: x*(B(x)^3 + 3*B(x)*B(x^2) + 2*B(x^3))/6 where B(x) is the g.f. of A287891.
Showing 1-3 of 3 results.