cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380641 Expansion of e.g.f. exp(x/(1 - 3*x)^3).

Original entry on oeis.org

1, 1, 19, 379, 8857, 244801, 7904251, 292980619, 12257946289, 570627408097, 29212843607011, 1629314013114811, 98250285167099209, 6365331315043185889, 440712959779710869707, 32460639303987670526731, 2533396174719346231613281, 208776665140069914314618689
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[3^k * Binomial[3*n-2*k-1,k]/(n-k)!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jan 29 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, 3^k*binomial(3*n-2*k-1, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} 3^k * binomial(3*n-2*k-1,k)/(n-k)!.
E.g.f.: exp( Sum_{k>=1} k*(k+1)/2 * 3^(k-1) * x^k ).
From Vaclav Kotesovec, Jan 29 2025: (Start)
a(n) = (12*n-11)*a(n-1) - 6*(n-1)*(9*n-19)*a(n-2) + 108*(n-3)*(n-2)*(n-1)*a(n-3) - 81*(n-4)*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^n * n^(n - 1/8) / (2 * exp(n - 4*n^(3/4)/3 - sqrt(n)/6 + n^(1/4)/72 + 1/81)) * (1 + 16957/(207360*n^(1/4))). (End)

A380643 Expansion of e.g.f. exp(x*G(3*x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 19, 865, 63289, 6402421, 827951491, 130454402149, 24246255965905, 5193341198368489, 1259626725043888051, 341256073037890028041, 102138911537774675080969, 33470594059698797005874845, 11918817613356955871120346979, 4582850483720783516657005897741
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, 3^k*binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));

Formula

a(n) = 3 * n! * Sum_{k=0..n-1} 3^k * binomial(3*n+k,k)/((3*n+k) * (n-k-1)!) for n > 0.
E.g.f. A(x) satisfies x = log(A(x)) * (1 - 3*log(A(x)))^3.
a(n) = 3^(n-1)*U(1-n, 2-4*n, 1/3), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 29 2025
E.g.f.: exp( Series_Reversion( x*(1-3*x)^3 ) ). - Seiichi Manyama, Mar 16 2025
Showing 1-2 of 2 results.