cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380655 Smallest prime p > 10^(n-1) for which successive cyclic shifts of digits by 1, ..., n-1 positions to the left are all prime, or -1 if no such p exists.

Original entry on oeis.org

2, 11, 113, 1193, 11939, 193939, 71777393, 913311913, 93739179151, 317793117877, 731779311787, 1373779119729007
Offset: 1

Views

Author

Jean-Marc Rebert, Jan 29 2025

Keywords

Examples

			_n_p__shifts of digits by 1, ..., n-1 positions (n <= number of digits of p) to the left
 1 2 -> ;
 2 11 -> 11;
 3 113 -> 131, 311;
 4 1193 -> 1931, 9311, 3119;
 5 11939 -> 19391, 93911, 39119, 91193;
 6 193939 -> 939391, 393919, 939193, 391939, 919393;
 7 71777393 -> 17773937, 77739371, 77393717, 73937177, 39371777, 93717773, but 37177739 = 29 * 683 * 1877;
 8 913311913 -> 133119139, 331191391, 311913913, 119139133, 191391331, 913913311, 139133119, but 391331191 = 29 * 131 * 239 * 431;
 9 93739179151 -> 37391791519, 73917915193, 39179151937, 91791519373, 17915193739, 79151937391, 91519373917, 15193739179, but 51937391791 = 419 * 887 * 139747;
10 317793117877 -> 177931178773, 779311787731, 793117877317, 931178773177, 311787731779, 117877317793, 178773177931, 787731779311, 877317793117, but 773177931178 = 2 * 386588965589;
11 731779311787 -> 317793117877, 177931178773, 779311787731, 793117877317, 931178773177, 311787731779, 117877317793, 178773177931, 787731779311, 877317793117, but 773177931178 = 2 * 386588965589;
12 1373779119729007 -> 3737791197290071, 7377911972900713, 3779119729007137, 7791197290071373, 7911972900713737, 9119729007137377, 1197290071373779, 1972900713737791, 9729007137377911, 7290071373779119, 2900713737791197, but 9007137377911972 = 2^2 * 13 * 6841 * 25320008821;
		

Crossrefs

Programs

  • Python
    from itertools import count, product
    from sympy import isprime
    def A380655(n):
        if n == 1: return 2
        for l in count(n):
            for a in product('1379', repeat=n-1):
                for b in product('0123456789', repeat=l-n):
                    for c in '1379':
                        d = ''.join(a+b)+c
                        if all(isprime(int(d[i:]+d[:i])) for i in range(n)):
                            return int(d) # Chai Wah Wu, Jan 30 2025

Extensions

a(10) and a(11) corrected by Chai Wah Wu, Jan 30 2025
Name edited by Pontus von Brömssen, Feb 03 2025
a(12) from Chai Wah Wu, Feb 06 2025