cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380781 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * (1 + x)^2) / (1 + x)^2 ).

Original entry on oeis.org

1, 3, 29, 514, 13473, 470616, 20607781, 1086800352, 67105960641, 4750972007680, 379512594172941, 33771911612182272, 3313441417839023521, 355371388642280715264, 41365962922892138767125, 5193995331631149377867776, 699785874809076112607739009, 100701968551637581411176480768
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=1, r=1, s=1, t=2, u=2) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp( x * A(x) * (1 + x*A(x))^2 ) * (1 + x*A(x))^2.
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(2*n+2*k+2,n-k)/k!.

A380674 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^2 * exp(-x * (1 - x)^2) ).

Original entry on oeis.org

1, 3, 25, 370, 8097, 237096, 8733601, 388380000, 20253654945, 1212334652800, 81937521020841, 6172429566120192, 512850795552978625, 46594245206418954240, 4595466275857015549425, 488993161791784338804736, 55839856392986843905585089, 6811561624203525171739852800
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(3*n-3*k+1, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(x * A(x) * (1 - x*A(x))^2)/(1 - x*A(x))^2.
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(3*n-3*k+1,n-k)/k!.

A380675 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^2 * exp(-x * (1 - x)) ).

Original entry on oeis.org

1, 3, 27, 436, 10377, 329016, 13079971, 626414496, 35132554449, 2259697340800, 164013549475371, 13263204195136512, 1182645846100592473, 115285805003164594176, 12197859187688440506675, 1392237638583170475298816, 170517388925776876433310369, 22307473046095249063001554944
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(3*n-2*k+1, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(x * A(x) * (1 - x*A(x)))/(1 - x*A(x))^2.
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(3*n-2*k+1,n-k)/k!.
Showing 1-3 of 3 results.