cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380709 G.f. A(x) satisfies A(x) = 1 + x*abs( 1/A(x) )^3.

Original entry on oeis.org

1, 1, 3, 9, 25, 60, 111, 356, 717, 1728, 3532, 7923, 13947, 43956, 135762, 455844, 1502005, 4377084, 9696816, 33777040, 76261380, 211981800, 491690441, 1156806114, 2388107247, 7425085120, 22208783472, 72885740508, 243066599038, 726160343256, 1695120635568, 5836780502656, 13416367141485
Offset: 0

Views

Author

Paul D. Hanna, Feb 09 2025

Keywords

Comments

Conjecture: a(n) == binomial(4*n-1, n) (mod 2) for n >= 0 (cf. A263132).

Examples

			G.f.: A(x) 1 + x + 3*x^2 + 9*x^3 + 25*x^4 + 60*x^5 + 111*x^6 + 356*x^7 + 717*x^8 + 1728*x^9 + 3532*x^10 + 7923*x^11 + 13947*x^12 + ...
RELATED SERIES.
1/A(x) = 1 - x - 2*x^2 - 4*x^3 - 6*x^4 + x^5 + 52*x^6 - 26*x^7 + 112*x^8 - 22*x^9 + 280*x^10 + 266*x^11 + 3978*x^12 + ...
The absolute value of the series 1/A(x) begins
abs(1/A(x)) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + x^5 + 52*x^6 + 26*x^7 + 112*x^8 + 22*x^9 + 280*x^10 + 266*x^11 + 3978*x^12 + 19476*x^13 + 53748*x^14 + 188096*x^15 + 356128*x^16 + 145318*x^17 + 4083268*x^18 + ...
the cube of which starts as
abs(1/A(x))^3 = 1 + 3*x + 9*x^2 + 25*x^3 + 60*x^4 + 111*x^5 + 356*x^6 + 717*x^7 + 1728*x^8 + ...
where A(x) = 1 + x*abs(1/A(x))^3.
SPECIFIC VALUES.
A(t) = 5   at t = 0.34652481192452632778148744009...
A(t) = 9/2 at t = 0.34332047911369115853530109434629340595421524344707...
A(t) = 4   at t = 0.33844988613244193281810217915341671138001247109315...
A(t) = 7/2 at t = 0.33093206633015553479076876378936259852312274709636...
A(t) = 3   at t = 0.31913094940940804614787566004609274666160372407803...
A(t) = 5/2 at t = 0.30017933266419626029599691715268323619028106096701...
A(t) = 2   at t = 0.26823879592468130644447947201722810537538246719689...
A(t) = 3/2 at t = 0.20641070526053514308343007863179336080812858639439...
A(1/3) = 3.6370099291721444216320225286542434877849899595617...
A(1/4) = 1.8094747379526694743161159394189701882898513040217...
A(1/5) = 1.4662568572713513624196239629654486684279393066965...
A(1/6) = 1.3230157298226165571635234305575666232122775793769...
A(1/7) = 1.2458642715965738773970674152984414596827918944570...
A(1/8) = 1.1980410385476832715212621689007173781378273728475...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = 1 + x*Ser(abs(Vec(1/(A +x*O(x^n)))))^3 ); polcoef(H=A,n)}
    for(n=0,40,print1(a(n),", "))