A380709 G.f. A(x) satisfies A(x) = 1 + x*abs( 1/A(x) )^3.
1, 1, 3, 9, 25, 60, 111, 356, 717, 1728, 3532, 7923, 13947, 43956, 135762, 455844, 1502005, 4377084, 9696816, 33777040, 76261380, 211981800, 491690441, 1156806114, 2388107247, 7425085120, 22208783472, 72885740508, 243066599038, 726160343256, 1695120635568, 5836780502656, 13416367141485
Offset: 0
Keywords
Examples
G.f.: A(x) 1 + x + 3*x^2 + 9*x^3 + 25*x^4 + 60*x^5 + 111*x^6 + 356*x^7 + 717*x^8 + 1728*x^9 + 3532*x^10 + 7923*x^11 + 13947*x^12 + ... RELATED SERIES. 1/A(x) = 1 - x - 2*x^2 - 4*x^3 - 6*x^4 + x^5 + 52*x^6 - 26*x^7 + 112*x^8 - 22*x^9 + 280*x^10 + 266*x^11 + 3978*x^12 + ... The absolute value of the series 1/A(x) begins abs(1/A(x)) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + x^5 + 52*x^6 + 26*x^7 + 112*x^8 + 22*x^9 + 280*x^10 + 266*x^11 + 3978*x^12 + 19476*x^13 + 53748*x^14 + 188096*x^15 + 356128*x^16 + 145318*x^17 + 4083268*x^18 + ... the cube of which starts as abs(1/A(x))^3 = 1 + 3*x + 9*x^2 + 25*x^3 + 60*x^4 + 111*x^5 + 356*x^6 + 717*x^7 + 1728*x^8 + ... where A(x) = 1 + x*abs(1/A(x))^3. SPECIFIC VALUES. A(t) = 5 at t = 0.34652481192452632778148744009... A(t) = 9/2 at t = 0.34332047911369115853530109434629340595421524344707... A(t) = 4 at t = 0.33844988613244193281810217915341671138001247109315... A(t) = 7/2 at t = 0.33093206633015553479076876378936259852312274709636... A(t) = 3 at t = 0.31913094940940804614787566004609274666160372407803... A(t) = 5/2 at t = 0.30017933266419626029599691715268323619028106096701... A(t) = 2 at t = 0.26823879592468130644447947201722810537538246719689... A(t) = 3/2 at t = 0.20641070526053514308343007863179336080812858639439... A(1/3) = 3.6370099291721444216320225286542434877849899595617... A(1/4) = 1.8094747379526694743161159394189701882898513040217... A(1/5) = 1.4662568572713513624196239629654486684279393066965... A(1/6) = 1.3230157298226165571635234305575666232122775793769... A(1/7) = 1.2458642715965738773970674152984414596827918944570... A(1/8) = 1.1980410385476832715212621689007173781378273728475...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..2000
Programs
-
PARI
{a(n) = my(A=1); for(i=1,n, A = 1 + x*Ser(abs(Vec(1/(A +x*O(x^n)))))^3 ); polcoef(H=A,n)} for(n=0,40,print1(a(n),", "))
Comments