A380716 Primitive solutions k to the Diophantine equation k^7 = Sum_{i=1..8} y_i^7 with y_i > 0.
102, 377, 430, 454
Offset: 1
Examples
102^7 = 12^7 + 35^7 + 53^7 + 58^7 + 64^7 + 83^7 + 85^7 + 90^7. 377^7 = 5^7 + 23^7 + 47^7 + 97^7 + 108^7 + 179^7 + 315^7 + 359^7. 430^7 = 10^7 + 105^7 + 105^7 + 113^7 + 160^7 + 256^7 + 373^7 + 400^7. 454^7 = 50^7 + 52^7 + 65^7 + 252^7 + 266^7 + 312^7 + 319^7 + 440^7.
Links
- Eric Weisstein's World of Mathematics, Diophantine Equation - 7th powers.
- Index to sequences related to Diophantine equations (7,1,8)
Crossrefs
Cf. A381026.
Extensions
a(4) from Jinyuan Wang, Feb 12 2025