A380742 Even numbers m such that the sum of the squares of the odd divisors and the sum of the squares of even divisors of m are both squares.
2, 574, 3346, 12474, 19598, 19710, 42770, 73062, 93310, 133630, 250510, 365330, 425898, 485758, 546530, 761022, 782690, 1254430, 1460290, 1628926, 2139790, 2174018, 2286954, 2332798, 2845154, 3185870, 3630146, 4562510, 5089394, 5444010, 5656770, 6265870, 6377618
Offset: 1
Keywords
Examples
574 is in the sequence because: its divisors are {1, 2, 7, 14, 41, 82, 287, 574}; the sum of squares of the odd divisors is 84100 which is square, and the sum of squares of the even divisors is 336400 which is square.
Programs
-
Maple
with(numtheory):nn:=10^7: for m from 2 by 2 to nn do: d:=divisors(m): s1:=0: s2:=0: for i in d do if i::odd then s1:=s1+i^2 else s2:=s2+i^2 fi od: if issqr(s2) and issqr(s1) then print(m) fi od:
-
Mathematica
Select[Range[2,10^6,2],AllTrue[{Sqrt[Total[Select[Divisors[#],OddQ]^2]],Sqrt[Total[Select[Divisors[#],EvenQ]^2]]},IntegerQ]&] (* James C. McMahon, Feb 10 2025 *)
-
PARI
isok(k) = !(k%2) && issquare(sumdiv(k, d, if (d%2, d^2))) && issquare(sumdiv(k, d, if (1-d%2, d^2))); \\ Michel Marcus, Feb 22 2025
Comments