cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380839 Numerators of J(n) = Product_{p|n, p odd prime} (p - 1)/(p - 2).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 2, 12, 6, 8, 1, 16, 2, 18, 4, 12, 10, 22, 2, 4, 12, 2, 6, 28, 8, 30, 1, 20, 16, 8, 2, 36, 18, 24, 4, 40, 12, 42, 10, 8, 22, 46, 2, 6, 4, 32, 12, 52, 2, 40, 6, 36, 28, 58, 8, 60, 30, 12, 1, 16, 20, 66, 16, 44, 8, 70, 2, 72, 36
Offset: 1

Views

Author

Artur Jasinski, Feb 05 2025

Keywords

Comments

This sequence is similar to A173557 but differences occurs for indices n=35,65,70,...
Coefficients J(n)=a(n)/A307410(n) occurs in many formulas on density of primes with gap 2*n.
Sylvester was the first who uses these coefficients at 1871.

Examples

			1, 1, 2, 1, 4/3, 2, 6/5, 1, 2, 4/3, 10/9, 2, 12/11, ...
a(35) = 8 because 35 = 5 * 7 and then product is ((5-1)/(5-2))*((7-1)/(7-2)) = 8/5.
		

Crossrefs

Cf. A167864, A173557, A305444, A307410 (denominators).

Programs

  • Mathematica
    j = {}; Do[prod = 1; Do[If[PrimeQ[n] && IntegerQ[d/n], prod = prod (n - 1)/(n - 2)], {n, 3, d}]; AppendTo[j, prod], {d, 1, 74}]; Numerator[j]
    f[p_, e_] := If[p == 2, 1, (p-1)/(p-2)]; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Mar 03 2025 *)
  • PARI
    a(n) = my(f=factor(n)[,1]); numerator(prod(k=1, #f, if ((p=f[k])>2, (p-1)/(p-2), 1))); \\ Michel Marcus, Feb 05 2025

Formula

a(n) = numerator(A173557(n)/A305444(n)).
a(p^n) = p - 1 for prime p.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A307410(k) = Product_{prime p > 2} (1 + 1/(p*(p-2))) = 1.51478012... (A167864). - Amiram Eldar, Mar 03 2025