cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380842 Main diagonal of the array A380841.

Original entry on oeis.org

1, 1, 10, 141, 2776, 70045, 2157156, 78452521, 3290644288, 156380715801, 8304267312100, 487328231729581, 31318669850761008, 2187567259278425557, 165011952533314548676, 13368463736048341225425, 1157693100510102752463616, 106719312722496774534400177, 10433609651067618426072766020
Offset: 0

Views

Author

Stefano Spezia, Feb 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A380841[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; Table[A380841[n,n],{n,0,18}]
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+n-1, k)/(n-k)!); \\ Seiichi Manyama, Feb 06 2025

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(k+n-1,k)/(n-k)!. - Seiichi Manyama, Feb 06 2025
a(n) ~ r^(n + 1/2) * (1+r)^n * n^n / (sqrt(1 + 2*r - r^2) * exp(n) * (1-r)^n), where r = 0.760359234033398901446642379997259705906638343193092252797... is the root of the equation exp(1-r)*(1-r^2)^r = r^(2*r). - Vaclav Kotesovec, May 29 2025

A380843 Antidiagonal sums of the array A380841.

Original entry on oeis.org

1, 1, 2, 7, 35, 237, 2040, 21255, 259591, 3633549, 57320398, 1005959831, 19436938571, 409965565469, 9372278051700, 230832086585495, 6093185704307967, 171604903098322813, 5136091192685429770, 162792009969153667111, 5447239135976543715731, 191888373741260775025741
Offset: 0

Views

Author

Stefano Spezia, Feb 05 2025

Keywords

Crossrefs

Cf. A380841.

Programs

  • Mathematica
    A380841[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; a[n_]:=Sum[A380841[n-k,k],{k,0,n}]; Array[a,22,0]
Showing 1-2 of 2 results.