A380857 Squares of numbers that are neither squarefree nor prime powers.
144, 324, 400, 576, 784, 1296, 1600, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5184, 5625, 5776, 6400, 7056, 7744, 8100, 8464, 9216, 9604, 9801, 10000, 10816, 11664, 12544, 13456, 13689, 14400, 15376, 15876, 17424, 18225, 18496, 19600, 20736
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[150], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]^2
-
PARI
isok(k) = !issquarefree(k) && !isprimepower(k); \\ A126706 apply(sqr, select(isok, [1..200])) \\ Michel Marcus, Feb 07 2025
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, mobius def A380857(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) return bisection(f,n,n)**2 # Chai Wah Wu, Feb 08 2025
Comments