cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380857 Squares of numbers that are neither squarefree nor prime powers.

Original entry on oeis.org

144, 324, 400, 576, 784, 1296, 1600, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5184, 5625, 5776, 6400, 7056, 7744, 8100, 8464, 9216, 9604, 9801, 10000, 10816, 11664, 12544, 13456, 13689, 14400, 15376, 15876, 17424, 18225, 18496, 19600, 20736
Offset: 1

Views

Author

Michael De Vlieger, Feb 06 2025

Keywords

Comments

Proper subset of A359280 which is a proper subset of A286708 (powerful numbers that are not prime powers, a proper subset of A126706).
Does not intersect A362605.

Crossrefs

Cf. A059404, A126706, A177492 (k^2 for k in A120944), A286708, A359280, A362605, A378768 (k^2 for k in A286708).

Programs

  • Mathematica
    Select[Range[150], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]^2
  • PARI
    isok(k) = !issquarefree(k) && !isprimepower(k); \\ A126706
    apply(sqr, select(isok, [1..200])) \\ Michel Marcus, Feb 07 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, mobius
    def A380857(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        return bisection(f,n,n)**2 # Chai Wah Wu, Feb 08 2025

Formula

a(n) = A126706(n)^2.
Sum_{n>=1} 1/a(n) = Pi^2/6 - 15/Pi^2 - Sum_{p prime} 1/(p^2*(p^2-1)) = A013661 - A082020 + A085548 - A154945 = 0.025670434597226178881... . - Amiram Eldar, Feb 08 2025