cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380917 E.g.f. A(x) satisfies A(x) = exp(3 * x / (1 - x*A(x))) / (1 - x*A(x)).

Original entry on oeis.org

1, 4, 31, 453, 9957, 293103, 10850625, 484699491, 25381819737, 1525299702363, 103484966417109, 7824985701013143, 652582573442231733, 59509330659228595239, 5890961096785803165129, 629159786981753244521787, 72111288184913038638092337, 8828896697592792281849882547
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=3, r=3, s=0, t=1, u=1/3) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} 3^k * (n-k+1)^(k-1) * binomial(2*n-k,n-k)/k!.

A380918 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x) * exp(-2*x/(1 - x)) ).

Original entry on oeis.org

1, 3, 32, 626, 18144, 701712, 34047712, 1990612752, 136308561408, 10704617527040, 948670854933504, 93670162457937408, 10198210374637791232, 1213835371265476399104, 156812263847161339392000, 21853442119644273456908288, 3268006232205247017382182912, 521999475213929172983534518272
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=2, r=2, s=2, t=1, u=1/2) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(2*x*A(x) / (1 - x*A(x))) / (1 - x*A(x)).
a(n) = n! * Sum_{k=0..n} 2^k * (n+1)^(k-1) * binomial(2*n,n-k)/k!.
Showing 1-2 of 2 results.