cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380916 E.g.f. A(x) satisfies A(x) = exp(2 * x / (1 - x*A(x))) / (1 - x*A(x)).

Original entry on oeis.org

1, 3, 20, 254, 4832, 123152, 3947008, 152638320, 6919663360, 359984690432, 21143150157824, 1384004213748224, 99919253031411712, 7887827865170055168, 675952599490594422784, 62495398874421426649088, 6200786173880446466785280, 657212589119205105944428544
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=2, r=2, s=0, t=1, u=1/2) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} 2^k * (n-k+1)^(k-1) * binomial(2*n-k,n-k)/k!.

A380919 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x) * exp(-3*x/(1 - x)) ).

Original entry on oeis.org

1, 4, 55, 1380, 51213, 2533968, 157230099, 11752365600, 1028673637785, 103250018926080, 11693974366638639, 1475530063767972864, 205281631888995454245, 31221155498006896773120, 5153702313885813394180875, 917695970480270443222536192, 175344823710094148613399084849
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=3, r=3, s=3, t=1, u=1/3) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(3*x*A(x) / (1 - x*A(x))) / (1 - x*A(x)).
a(n) = n! * Sum_{k=0..n} 3^k * (n+1)^(k-1) * binomial(2*n,n-k)/k!.
Showing 1-2 of 2 results.