cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A380940 Decimal expansion of the smallest vertex angle, in radians, in a disdyakis triacontahedron face.

Original entry on oeis.org

5, 7, 1, 9, 4, 9, 2, 5, 6, 1, 1, 9, 3, 8, 6, 8, 5, 5, 9, 8, 4, 1, 5, 4, 6, 2, 7, 1, 5, 5, 3, 3, 8, 2, 4, 1, 5, 0, 7, 3, 0, 4, 0, 5, 4, 6, 7, 3, 1, 0, 2, 8, 4, 8, 6, 4, 8, 0, 5, 2, 5, 5, 1, 4, 4, 3, 6, 4, 2, 2, 1, 3, 0, 7, 6, 9, 6, 6, 1, 0, 6, 7, 3, 0, 2, 8, 3, 6, 1, 9
Offset: 0

Views

Author

Paolo Xausa, Feb 08 2025

Keywords

Comments

A disdyakis triacontahedron face is a scalene triangle with three acute angles.

Examples

			0.57194925611938685598415462715533824150730405467310...
		

Crossrefs

Cf. A380941 (middle face angle), A380942 (face largest face angle).

Programs

  • Mathematica
    First[RealDigits[ArcCos[(2 + 5*GoldenRatio)/12], 10, 100]]

Formula

Equals arccos((2 + 5*A001622)/12).
Equals Pi - A380941 - A380942.

A380941 Decimal expansion of the middle vertex angle, in radians, in a disdyakis triacontahedron face.

Original entry on oeis.org

1, 0, 1, 6, 4, 4, 3, 4, 4, 6, 8, 9, 6, 3, 3, 0, 1, 5, 0, 1, 6, 0, 0, 9, 7, 5, 5, 1, 5, 1, 7, 0, 6, 9, 6, 4, 3, 6, 3, 7, 9, 2, 8, 8, 9, 2, 9, 0, 6, 3, 9, 9, 6, 5, 7, 7, 8, 9, 0, 0, 8, 2, 7, 6, 2, 8, 3, 2, 0, 7, 1, 2, 9, 7, 4, 4, 1, 3, 1, 7, 4, 2, 5, 0, 6, 8, 9, 8, 5, 4
Offset: 1

Views

Author

Paolo Xausa, Feb 08 2025

Keywords

Comments

A disdyakis triacontahedron face is a scalene triangle with three acute angles.

Examples

			1.016443446896330150160097551517069643637928892906...
		

Crossrefs

Cf. A380940 (smallest face angle), A380942 (largest face angle).

Programs

  • Mathematica
    First[RealDigits[ArcCos[(17 - 4*GoldenRatio)/20], 10, 100]]

Formula

Equals arccos((17 - 4*A001622)/20).
Equals Pi - A380940 - A380942.

A380981 Decimal expansion of the medium/short edge length ratio of a disdyakis triacontahedron.

Original entry on oeis.org

1, 5, 7, 0, 8, 2, 0, 3, 9, 3, 2, 4, 9, 9, 3, 6, 9, 0, 8, 9, 2, 2, 7, 5, 2, 1, 0, 0, 6, 1, 9, 3, 8, 2, 8, 7, 0, 6, 3, 2, 1, 8, 5, 5, 0, 7, 8, 8, 3, 4, 5, 7, 7, 1, 7, 2, 8, 1, 2, 6, 9, 1, 7, 3, 6, 2, 3, 1, 5, 6, 2, 7, 7, 6, 9, 1, 3, 4, 1, 4, 6, 9, 8, 2, 4, 3, 2, 4, 3, 2
Offset: 1

Views

Author

Paolo Xausa, Feb 10 2025

Keywords

Examples

			1.57082039324993690892275210061938287063218550788...
		

Crossrefs

Cf. A380982 (long/short edge length ratio).
Apart from leading digits the same as A176015, A134976 and A010499.

Programs

  • Mathematica
    First[RealDigits[3/10*(3 + Sqrt[5]), 10, 100]]

Formula

Equals (3/10)*(3 + sqrt(5)) = (3/10)*(3 + A002163).
Equals A176015 + 2/5.

A380982 Decimal expansion of the long/short edge length ratio of a disdyakis triacontahedron.

Original entry on oeis.org

1, 8, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8
Offset: 1

Views

Author

Paolo Xausa, Feb 10 2025

Keywords

Examples

			1.8472135954999579392818347337462552470881236719223...
		

Crossrefs

Cf. A380981 (medium/short edge length ratio).
Apart from leading digits the same as A176453, A134974 and A010476.

Programs

  • Mathematica
    First[RealDigits[7/5 + 1/Sqrt[5], 10, 100]] (* Paolo Xausa, Feb 10 2025 *)

Formula

Equals 1/sqrt(5) + 7/5 = A020762 + 7/5.
Showing 1-4 of 4 results.