A380987 Position of first appearance of n in A290106 (product of prime indices divided by product of distinct prime indices).
1, 9, 25, 27, 121, 169, 289, 81, 125, 841, 961, 675, 1681, 1849, 2209, 243, 3481, 1125, 4489, 3267, 5329, 6241, 6889, 2025, 1331, 10201, 625, 7803, 11881, 12769, 16129, 729, 18769, 19321, 22201, 2197, 24649, 26569, 27889, 9801, 32041, 32761, 36481, 25947
Offset: 1
Keywords
Examples
The first position of 12 in A290106 is 675, with prime indices {2,2,2,3,3}, so a(12) = 675. The terms together with their prime indices begin: 1: {} 9: {2,2} 25: {3,3} 27: {2,2,2} 121: {5,5} 169: {6,6} 289: {7,7} 81: {2,2,2,2} 125: {3,3,3} 841: {10,10} 961: {11,11} 675: {2,2,2,3,3} 1681: {13,13} 1849: {14,14} 2209: {15,15} 243: {2,2,2,2,2} 3481: {17,17} 1125: {2,2,3,3,3}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,10000}]; Table[Position[q,k][[1,1]],{k,mnrm[q]}]
Comments