A280286
a(n) is the least k such that sopfr(k) - sopf(k) = n.
Original entry on oeis.org
4, 9, 8, 25, 16, 49, 32, 81, 64, 121, 128, 169, 256, 625, 512, 289, 1024, 361, 2048, 1444, 1331, 529, 5324, 2116, 2197, 4232, 8788, 841, 17576, 961, 7569, 3844, 4913, 7688, 19652, 1369, 6859, 5476, 12321, 1681, 34225, 1849, 15129, 7396, 12167, 2209, 46225, 8836, 19881
Offset: 2
For length instead of sum we have
A151821.
For prime exponents instead of factors we have
A380989, firsts of
A380958.
Cf.
A000720,
A001222,
A046660,
A071625,
A075255,
A116861,
A136565,
A156061,
A178503,
A175508,
A364916,
A366528.
-
prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,1000}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
Table[Position[q,k][[1,1]],{k,2,mnrm[q/.(0->1)]}] (* Gus Wiseman, Feb 20 2025 *)
-
sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]*f[j,2]);
sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]);
a(n) = {my(k = 2); while (sopfr(k) - sopf(k) != n, k++); k;}
A381075
Sorted positions of first appearances in A280292 (sum of prime factors minus sum of distinct prime factors).
Original entry on oeis.org
1, 4, 8, 9, 16, 25, 32, 49, 64, 81, 121, 128, 169, 256, 289, 361, 512, 529, 625, 841, 961, 1024, 1331, 1369, 1444, 1681, 1849, 2048, 2116, 2197, 2209, 2809, 3481, 3721, 3844, 4232, 4489, 4913, 5041, 5324, 5329, 5476, 6241, 6859, 6889, 7396, 7569, 7688, 7921
Offset: 1
The initial terms of A280292 are (0,0,0,2,0,0,0,4,3,0,0,2,0,0,0,6,0,3,0,2,0,0,0,4,5,0,6,2,...), wherein a value appears for the first time at positions 1, 4, 8, 9, 16, 25, ...
For length instead of sum we have
A151821.
For prime multiplicities instead of factors see
A380989, firsts of
A380958.
A364916 counts partitions by (sum minus sum of distinct parts).
Cf.
A000720,
A001414,
A008472,
A046660,
A071625,
A075255,
A116861,
A136565,
A156061,
A178503,
A175508,
A366528.
-
prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,10000}];
Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
-
f(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2] - f[j, 1]); \\ A280292
lista(nn) = my(v=Set(vector(nn, i, f(i))), list=List()); for (i=1, #v, my(k=1); while(f(k) != v[i], k++); listput(list, k)); vecsort(Vec(list)); \\ Michel Marcus, Apr 15 2025
A380956
Position of first appearance of n in A380955 (sum of prime indices minus sum of distinct prime indices).
Original entry on oeis.org
1, 4, 8, 16, 27, 64, 81, 256, 243, 529, 729, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 0
The terms together with their prime indices begin:
1: {}
4: {1,1}
8: {1,1,1}
16: {1,1,1,1}
27: {2,2,2}
64: {1,1,1,1,1,1}
81: {2,2,2,2}
256: {1,1,1,1,1,1,1,1}
243: {2,2,2,2,2}
529: {9,9}
729: {2,2,2,2,2,2}
961: {11,11}
1369: {12,12}
1681: {13,13}
1849: {14,14}
2209: {15,15}
For length instead of sum we have
A151821.
Counting partitions by this statistic gives
A364916.
Positions of first appearances in
A380955.
For product instead of sum we have firsts of
A380986.
For prime multiplicities instead of prime indices we have
A380989, firsts of
A380958.
Cf.
A000720,
A046660,
A071625,
A075255,
A116861,
A136565,
A156061,
A178503,
A175508,
A325033,
A366528,
A366749,
A374248.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}];
Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}]
A380957
Sorted positions of first appearances in A380955 (sum of prime indices minus sum of distinct prime indices).
Original entry on oeis.org
1, 4, 8, 16, 27, 64, 81, 243, 256, 529, 729, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 1
For length instead of sum we have
A151821.
Counting partitions by this statistic (sum minus sum of distinct parts) gives
A364916.
Sorted positions of first appearances in
A380955.
For product instead of sum we have sorted firsts of
A380986.
For prime multiplicities instead of prime indices we have
A380989, firsts of
A380958.
Cf.
A000720,
A046660,
A071625,
A075255,
A116861,
A136565,
A156061,
A178503,
A175508,
A325033,
A366528,
A366749,
A374248.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}];
Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
A380988
Sorted positions of first appearances in A290106 (product of prime indices divided by product of distinct prime indices).
Original entry on oeis.org
1, 9, 25, 27, 81, 121, 125, 169, 243, 289, 625, 675, 729, 841, 961, 1125, 1331, 1681, 1849, 2025, 2187, 2197, 2209, 3125, 3267, 3481, 4489, 4913, 5329, 5625, 6075, 6241, 6561, 6889, 7803, 9801, 10125, 10201, 11881, 11979, 12769, 14641, 15125, 15625, 16129
Offset: 1
The prime indices of 225 are {2,2,3,3}, with image A290106(225) = 6. The prime indices of 169 are {6,6}, also with image 6. Since the latter is the first with image 6, 169 is in the sequence, and 225 is not.
The terms together with their prime indices begin:
1: {}
9: {2,2}
25: {3,3}
27: {2,2,2}
81: {2,2,2,2}
121: {5,5}
125: {3,3,3}
169: {6,6}
243: {2,2,2,2,2}
289: {7,7}
625: {3,3,3,3}
675: {2,2,2,3,3}
729: {2,2,2,2,2,2}
841: {10,10}
961: {11,11}
1125: {2,2,3,3,3}
1331: {5,5,5}
1681: {13,13}
1849: {14,14}
2025: {2,2,2,2,3,3}
For difference instead of quotient see
A380986.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,1000}];
Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
A381076
Sorted positions of first appearances in A066503 (n minus squarefree kernel of n).
Original entry on oeis.org
1, 4, 8, 16, 18, 20, 24, 25, 27, 32, 44, 48, 50, 52, 54, 64, 68, 72, 75, 76, 80, 81, 92, 96, 98, 108, 112, 116, 121, 125, 128, 144, 148, 152, 160, 162, 164, 172, 175, 176, 188, 189, 192, 196, 198, 200, 212, 216, 232, 236, 242, 243, 244, 256, 260, 264, 268, 272
Offset: 1
For quotient instead of difference we have
A001694, sorted firsts of
A003557.
Sorted positions of first appearances in
A066503.
For indices instead of factors we have
A381077, sorted firsts of
A380986.
Cf.
A001221,
A001222,
A038838,
A046660,
A075255,
A081770,
A116861,
A136565,
A178503,
A175508,
A304038,
A380989.
-
prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
q=Table[Times@@prifacs[n]-Times@@Union[prifacs[n]],{n,1000}];
Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
A381077
Sorted positions of first appearances in A380986 (product of prime indices minus product of distinct prime indices).
Original entry on oeis.org
1, 9, 25, 49, 63, 81, 99, 121, 125, 135, 169, 171, 245, 279, 289, 343, 361, 363, 369, 375, 387, 477, 529, 531, 575, 603, 625, 675, 711, 729, 747, 833, 841, 847, 873, 875, 891, 909, 961, 981, 1029, 1083, 1125, 1127, 1179, 1225, 1251, 1377, 1413, 1445, 1467
Offset: 1
The terms together with their prime indices begin:
1: {}
9: {2,2}
25: {3,3}
49: {4,4}
63: {2,2,4}
81: {2,2,2,2}
99: {2,2,5}
121: {5,5}
125: {3,3,3}
135: {2,2,2,3}
169: {6,6}
171: {2,2,8}
245: {3,4,4}
279: {2,2,11}
For factors instead of indices we have
A381076, sorted firsts of
A066503.
Sorted firsts of
A380986, which has nonzero terms at positions
A038838.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
q=Table[Times@@prix[n]-Times@@Union[prix[n]],{n,10000}];
Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
Showing 1-7 of 7 results.
Comments