cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A280286 a(n) is the least k such that sopfr(k) - sopf(k) = n.

Original entry on oeis.org

4, 9, 8, 25, 16, 49, 32, 81, 64, 121, 128, 169, 256, 625, 512, 289, 1024, 361, 2048, 1444, 1331, 529, 5324, 2116, 2197, 4232, 8788, 841, 17576, 961, 7569, 3844, 4913, 7688, 19652, 1369, 6859, 5476, 12321, 1681, 34225, 1849, 15129, 7396, 12167, 2209, 46225, 8836, 19881
Offset: 2

Views

Author

Michel Marcus, Dec 31 2016

Keywords

Crossrefs

Cf. A001414 (sopfr), A008472 (sopf), A001248, A280163.
A multiplicative version is A064549 (sorted A001694), firsts of A003557.
For length instead of sum we have A151821.
These are the positions of first appearances in A280292 = A001414 - A008472.
For indices instead of factors we have A380956 (sorted A380957), firsts of A380955.
A multiplicative version for indices is A380987 (sorted A380988), firsts of A290106.
For prime exponents instead of factors we have A380989, firsts of A380958.
The sorted version is A381075.
For product instead of sum see A381076, sorted firsts of A066503.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A020639 gives least prime factor (index A055396), greatest A061395 (index A006530).
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
    q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,1000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[q,k][[1,1]],{k,2,mnrm[q/.(0->1)]}] (* Gus Wiseman, Feb 20 2025 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]*f[j,2]);
    sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]);
    a(n) = {my(k = 2); while (sopfr(k) - sopf(k) != n, k++); k;}

Formula

For p prime, a(p) = p^2 (see A001248).

A381075 Sorted positions of first appearances in A280292 (sum of prime factors minus sum of distinct prime factors).

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 32, 49, 64, 81, 121, 128, 169, 256, 289, 361, 512, 529, 625, 841, 961, 1024, 1331, 1369, 1444, 1681, 1849, 2048, 2116, 2197, 2209, 2809, 3481, 3721, 3844, 4232, 4489, 4913, 5041, 5324, 5329, 5476, 6241, 6859, 6889, 7396, 7569, 7688, 7921
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Examples

			The initial terms of A280292 are (0,0,0,2,0,0,0,4,3,0,0,2,0,0,0,6,0,3,0,2,0,0,0,4,5,0,6,2,...), wherein a value appears for the first time at positions 1, 4, 8, 9, 16, 25, ...
		

Crossrefs

For length instead of sum we have A151821.
The unsorted version is A280286, firsts of A280292.
For indices instead of factors we have A380957 (unsorted A380956), firsts of A380955.
A multiplicative version is A380988 (unsorted A380987), firsts of A290106.
For prime multiplicities instead of factors see A380989, firsts of A380958.
For product instead of sum we have A381076, sorted firsts of A066503.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A364916 counts partitions by (sum minus sum of distinct parts).

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
    q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,10000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
  • PARI
    f(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2] - f[j, 1]); \\ A280292
    lista(nn) = my(v=Set(vector(nn, i, f(i))), list=List()); for (i=1, #v, my(k=1); while(f(k) != v[i], k++); listput(list, k)); vecsort(Vec(list)); \\ Michel Marcus, Apr 15 2025

Formula

Sorted positions of first appearances in A001414 - A008472.

A380956 Position of first appearance of n in A380955 (sum of prime indices minus sum of distinct prime indices).

Original entry on oeis.org

1, 4, 8, 16, 27, 64, 81, 256, 243, 529, 729, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also the position of first appearance of n in A374248.

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    27: {2,2,2}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   243: {2,2,2,2,2}
   529: {9,9}
   729: {2,2,2,2,2,2}
   961: {11,11}
  1369: {12,12}
  1681: {13,13}
  1849: {14,14}
  2209: {15,15}
		

Crossrefs

For length instead of sum we have A151821.
For factors instead of indices we have A280286 (sorted A381075), firsts of A280292.
Counting partitions by this statistic gives A364916.
Positions of first appearances in A380955.
The sorted version is A380957.
For product instead of sum we have firsts of A380986.
A multiplicative version is A380987 (sorted A380988), firsts of A290106.
For prime multiplicities instead of prime indices we have A380989, firsts of A380958.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}];
    Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}]

Formula

After a(12) = 961, this appears to converge to prime(n)^2.

A380957 Sorted positions of first appearances in A380955 (sum of prime indices minus sum of distinct prime indices).

Original entry on oeis.org

1, 4, 8, 16, 27, 64, 81, 243, 256, 529, 729, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2025

Keywords

Comments

Also appears to be sorted firsts of A374248.

Crossrefs

For length instead of sum we have A151821.
Counting partitions by this statistic (sum minus sum of distinct parts) gives A364916.
Sorted positions of first appearances in A380955.
The unsorted version is A380956.
For product instead of sum we have sorted firsts of A380986.
The multiplicative version is A380988, unsorted A380987, firsts of A290106.
For prime multiplicities instead of prime indices we have A380989, firsts of A380958.
For factors instead of indices we have A381075, see A280286, A280292.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]

A380988 Sorted positions of first appearances in A290106 (product of prime indices divided by product of distinct prime indices).

Original entry on oeis.org

1, 9, 25, 27, 81, 121, 125, 169, 243, 289, 625, 675, 729, 841, 961, 1125, 1331, 1681, 1849, 2025, 2187, 2197, 2209, 3125, 3267, 3481, 4489, 4913, 5329, 5625, 6075, 6241, 6561, 6889, 7803, 9801, 10125, 10201, 11881, 11979, 12769, 14641, 15125, 15625, 16129
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The prime indices of 225 are {2,2,3,3}, with image A290106(225) = 6. The prime indices of 169 are {6,6}, also with image 6. Since the latter is the first with image 6, 169 is in the sequence, and 225 is not.
The terms together with their prime indices begin:
     1: {}
     9: {2,2}
    25: {3,3}
    27: {2,2,2}
    81: {2,2,2,2}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   243: {2,2,2,2,2}
   289: {7,7}
   625: {3,3,3,3}
   675: {2,2,2,3,3}
   729: {2,2,2,2,2,2}
   841: {10,10}
   961: {11,11}
  1125: {2,2,3,3,3}
  1331: {5,5,5}
  1681: {13,13}
  1849: {14,14}
  2025: {2,2,2,2,3,3}
		

Crossrefs

For factors instead of indices we have A001694 (unsorted A064549), firsts of A003557.
Sorted firsts of A290106.
The additive version is A380957 (sorted A380956), firsts of A380955.
For difference instead of quotient see A380986.
The unsorted version is A380987.
The additive version for factors is A381075 (unsorted A280286), firsts of A280292.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,1000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]

A381076 Sorted positions of first appearances in A066503 (n minus squarefree kernel of n).

Original entry on oeis.org

1, 4, 8, 16, 18, 20, 24, 25, 27, 32, 44, 48, 50, 52, 54, 64, 68, 72, 75, 76, 80, 81, 92, 96, 98, 108, 112, 116, 121, 125, 128, 144, 148, 152, 160, 162, 164, 172, 175, 176, 188, 189, 192, 196, 198, 200, 212, 216, 232, 236, 242, 243, 244, 256, 260, 264, 268, 272
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Comments

In A066503, each value appears for the first time at one of these positions.

Crossrefs

For quotient instead of difference we have A001694, sorted firsts of A003557.
Sorted positions of first appearances in A066503.
For indices and sum we have A380957 (unsorted A380956), firsts of A380955.
For indices and quotient we have A380988 (unsorted A380987), firsts of A290106.
For sum instead of product we have A381075, sorted firsts of A280292, see A280286.
For indices instead of factors we have A381077, sorted firsts of A380986.
A000040 lists the primes, differences A001223.
A001414 adds up prime factors (indices A056239), row sums of A027746 (indices A112798).
A003963 gives product of prime indices, distinct A156061.
A005117 lists squarefree numbers, complement A013929.
A007947 gives squarefree kernel.
A020639 gives least prime factor (index A055396), greatest A061395 (index A006530).

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
    q=Table[Times@@prifacs[n]-Times@@Union[prifacs[n]],{n,1000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]

A381077 Sorted positions of first appearances in A380986 (product of prime indices minus product of distinct prime indices).

Original entry on oeis.org

1, 9, 25, 49, 63, 81, 99, 121, 125, 135, 169, 171, 245, 279, 289, 343, 361, 363, 369, 375, 387, 477, 529, 531, 575, 603, 625, 675, 711, 729, 747, 833, 841, 847, 873, 875, 891, 909, 961, 981, 1029, 1083, 1125, 1127, 1179, 1225, 1251, 1377, 1413, 1445, 1467
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A position of first appearance in a sequence q is an index k such that q(k) is different from q(j) for all j < k.
All terms are odd.

Examples

			The terms together with their prime indices begin:
     1: {}
     9: {2,2}
    25: {3,3}
    49: {4,4}
    63: {2,2,4}
    81: {2,2,2,2}
    99: {2,2,5}
   121: {5,5}
   125: {3,3,3}
   135: {2,2,2,3}
   169: {6,6}
   171: {2,2,8}
   245: {3,4,4}
   279: {2,2,11}
		

Crossrefs

For length instead of product we have A151821, firsts of A046660.
For factors instead of indices we have A381076, sorted firsts of A066503.
For sum of factors instead of product of indices we have A381075 (unsorted A280286), A280292.
For quotient instead of difference we have A380988 (unsorted A380987), firsts of A290106.
For quotient and factors we have A001694 (unsorted A064549), firsts of A003557.
For sum instead of product we have A380957 (unsorted A380956), firsts of A380955.
Sorted firsts of A380986, which has nonzero terms at positions A038838.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists the squarefree numbers, complement A013929.
A007947 gives squarefree kernel.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[Times@@prix[n]-Times@@Union[prix[n]],{n,10000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
Showing 1-7 of 7 results.