A381005 Ordered short legs of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
7, 175, 3007, 48895, 785407, 12578815, 201310207, 3221159935, 51539345407, 824632672255, 13194135339007, 211106215755775, 3377699653419007, 54043195260010495, 864691127381393407, 13835058050987196415, 221360928867334750207, 3541774862083514433535, 56668397794160864657407
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..800
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (21,-84,64).
Crossrefs
Programs
-
Magma
[2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1: n in [1..20]];
-
Mathematica
A381005[n_] := (3*# + 2)*(# - 2)/4 & [4^n]; Array[A381005, 20] (* or *) LinearRecurrence[{21, -84, 64}, {7, 175, 3007}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
PARI
a(n) = 2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1
-
Python
def A381005(n): return ((m:=1<<(n<<1)-1)-1)*(3*m+1) # Chai Wah Wu, Feb 13 2025
Formula
a(n) = 2^(4n) - 2^(4n-2) - 2^(2n) - 1.
G.f.: (7 + 28*x - 80*x^2)/((1 - x)*(1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025
Comments