cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381005 Ordered short legs of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.

Original entry on oeis.org

7, 175, 3007, 48895, 785407, 12578815, 201310207, 3221159935, 51539345407, 824632672255, 13194135339007, 211106215755775, 3377699653419007, 54043195260010495, 864691127381393407, 13835058050987196415, 221360928867334750207, 3541774862083514433535, 56668397794160864657407
Offset: 1

Views

Author

Robert C. Lyons, Feb 12 2025

Keywords

Comments

Proper subset of A020884.
Conjecture: These Pythagorean triangles are primitive. Verified up to n=100000.
The preceding conjecture is true, since, for n>=1, the values of a,b,c are given by Euclid's formula for generating Pythagorean triples: a=2xy, b=x^2-y^2, c=x^2+y^2 with x=2^(2n) and y=2^(2n-1)+1 and x and y are coprime and x is even and y is odd. - Chai Wah Wu, Feb 13 2025

Crossrefs

Cf. A020884.
Cf. A381006 (long legs), A381007 (hypotenuses), A381008 (perimeters), A381009 (areas).

Programs

  • Magma
    [2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1: n in [1..20]];
    
  • Mathematica
    A381005[n_] := (3*# + 2)*(# - 2)/4 & [4^n]; Array[A381005, 20] (* or *)
    LinearRecurrence[{21, -84, 64}, {7, 175, 3007}, 20] (* Paolo Xausa, Feb 26 2025 *)
  • PARI
    a(n) = 2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1
    
  • Python
    def A381005(n): return ((m:=1<<(n<<1)-1)-1)*(3*m+1) # Chai Wah Wu, Feb 13 2025

Formula

a(n) = 2^(4n) - 2^(4n-2) - 2^(2n) - 1.
a(n) = sqrt( A381007(n)^2 - A381006(n)^2 ).
G.f.: (7 + 28*x - 80*x^2)/((1 - x)*(1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025