A381006 Ordered long legs of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
24, 288, 4224, 66048, 1050624, 16785408, 268468224, 4295098368, 68720001024, 1099513724928, 17592194433024, 281475010265088, 4503599761588224, 72057594574798848, 1152921506754330624, 18446744082299486208, 295147905213712564224, 4722366483007084167168
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..800
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
Crossrefs
Programs
-
Magma
[2^(4*n) + 2^(2*n+1): n in [1..20]];
-
Mathematica
A381006[n_] := #*(# + 2) & [4^n]; Array[A381006, 20] (* or *) LinearRecurrence[{20, -64}, {24, 288}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
PARI
a(n) = 2^(4*n) + 2^(2*n+1)
-
Python
def A381006(n): return (m:=1<<(n<<1))*(m+2) # Chai Wah Wu, Feb 13 2025
Formula
a(n) = 2^(4n) + 2^(2n+1).
G.f.: 24*(1 - 8*x)/((1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025
Comments