cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381008 Ordered perimeters of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.

Original entry on oeis.org

56, 800, 12416, 197120, 3147776, 50339840, 805339136, 12885032960, 206158954496, 3298536980480, 52776566521856, 844424963686400, 13510799016329216, 216172782650654720, 3458764515968024576, 55340232229718589440, 885443715572418215936, 14167099448746374594560
Offset: 1

Views

Author

Robert C. Lyons, Feb 12 2025

Keywords

Comments

Proper subset of A024364.

Crossrefs

Cf. A024364.
Cf. A381005 (short legs), A381006 (long legs), A381007 (hypotenuses), A381009 (areas).

Programs

  • Magma
    [2^(4*n+1) + 2^(2*n+1) + 2^(4*n): n in [1..20]];
    
  • Mathematica
    A381008[n_] := #*(3*# + 2) & [4^n]; Array[A381008, 20] (* or *)
    LinearRecurrence[{20, -64}, {56, 800}, 20] (* Paolo Xausa, Feb 26 2025 *)
  • PARI
    a(n) = 2^(4*n+1) + 2^(2*n+1) + 2^(4*n)
    
  • Python
    def A381008(n): return (m:=1<<(n<<1))*(2+3*m) # Chai Wah Wu, Feb 13 2025

Formula

a(n) = A381005(n) + A381006(n) + A381007(n).
a(n) = 2^(4n+1) + 2^(2n+1) + 2^(4n).
G.f.: 8*(7 - 40*x)/((1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025