A381008 Ordered perimeters of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
56, 800, 12416, 197120, 3147776, 50339840, 805339136, 12885032960, 206158954496, 3298536980480, 52776566521856, 844424963686400, 13510799016329216, 216172782650654720, 3458764515968024576, 55340232229718589440, 885443715572418215936, 14167099448746374594560
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..800
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
Crossrefs
Programs
-
Magma
[2^(4*n+1) + 2^(2*n+1) + 2^(4*n): n in [1..20]];
-
Mathematica
A381008[n_] := #*(3*# + 2) & [4^n]; Array[A381008, 20] (* or *) LinearRecurrence[{20, -64}, {56, 800}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
PARI
a(n) = 2^(4*n+1) + 2^(2*n+1) + 2^(4*n)
-
Python
def A381008(n): return (m:=1<<(n<<1))*(2+3*m) # Chai Wah Wu, Feb 13 2025
Formula
a(n) = 2^(4n+1) + 2^(2n+1) + 2^(4n).
G.f.: 8*(7 - 40*x)/((1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025
Comments