cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381009 Ordered areas of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.

Original entry on oeis.org

84, 25200, 6350784, 1614708480, 412583721984, 105570270965760, 27022696873181184, 6917599389942743040, 1770891934572664848384, 453347470584212823736320, 116056897129722086198083584, 29710562123440325102508441600, 7605903676927233379495034486784, 1947111326786263531071061496954880
Offset: 1

Views

Author

Robert C. Lyons, Feb 12 2025

Keywords

Comments

Proper subset of A024406.

Crossrefs

Cf. A024406.
Cf. A381005 (short legs), A381006 (long legs), A381007 (hypotenuses), A381008 (perimeters).

Programs

  • Magma
    [(2^(4*n) + 2^(2*n+1)) * (2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1) / 2: n in [1..20]];
    
  • Mathematica
    A381009[n_] := (3*# + 2)*(# + 2)*(# - 2)*2^(2*n - 3) & [4^n]; Array[A381009, 20] (* or *)
    LinearRecurrence[{340, -22848, 348160, -1048576}, {84, 25200, 6350784, 1614708480}, 20] (* Paolo Xausa, Feb 26 2025 *)
  • PARI
    a(n) = (2^(4*n) + 2^(2*n+1)) * (2^(4*n) - 2^(4*n-2) - 2^(2*n) - 1) / 2
    
  • Python
    def A381009(n): return (m:=1<<(n<<1)-1)*(m-1)*(m+1)*(3*m+1)<<1 # Chai Wah Wu, Feb 13 2025

Formula

a(n) = A381005(n) * A381006(n) / 2.
a(n) = (2^(4n) + 2^(2n+1)) * (2^(4n) - 2^(4n-2) - 2^(2n) - 1) / 2.
G.f.: 12*(7 - 280*x - 24832*x^2 + 163840*x^3)/((1 - 4*x)*(1 - 16*x)*(1 - 64*x)*(1 - 256*x)). - Stefano Spezia, Feb 13 2025