A381010 Positive integers k such that 2^(k+2) - 1 is divisible by k.
1, 7, 511, 713, 11023, 15553, 43873, 81079, 95263, 323593, 628153, 2275183, 6520633, 6955513, 7947583, 10817233, 12627943, 14223823, 15346303, 19852423, 27923663, 28529473, 29360527, 31019623, 39041863, 41007823, 79015273, 134217727, 143998193, 213444943, 227018383
Offset: 1
Keywords
Programs
-
Maple
q:= k-> 0=(2&^(k+2)-1) mod k: select(q, [$1..1000000])[]; # Alois P. Heinz, Apr 10 2025
-
PARI
isok(k) = Mod(2, k)^(k+2) == 1; \\ Michel Marcus, Apr 10 2025
-
Python
def in_sequence(n): return pow(2, n + 2, n) == 1 % n
Comments