A381095 Indices of prime squares in A381019.
7, 13, 30, 55, 178, 468, 541, 854, 1454, 2099, 3744, 7330, 9091, 10138, 11917, 14154, 14350, 19363, 21555, 23553, 26615, 36109, 36533, 37302, 51588, 52576, 57183, 58064, 58144, 63067, 69927, 70135, 80174, 81920, 85923, 89936, 93749, 99240, 121884, 124693, 151411
Offset: 1
Keywords
Examples
Table listing n and S(n), where i = pi(sqrt(S(n))) and S = A381019. Asterisks denote confirmed S(n) = prime(i)^2 coprime to P(r)/prime(i), where P = A002110 and r, the index of the largest prime in S(1..n-1). n i S(n) -------------------------- 7 1 2^2 = 4 * 13 2 3^2 = 9 * 30 3 5^2 = 25 * 55 4 7^2 = 49 * 178 6 13^2 = 169 * 468 5 11^2 = 121 541 9 23^2 = 529 * 854 10 29^2 = 841 * 1454 7 17^2 = 289 2099 8 19^2 = 361 3744 18 61^2 = 3721 * 7330 11 31^2 = 961 9091 12 37^2 = 1369 10138 13 41^2 = 1681 11917 29 109^2 = 11881 14154 14 43^2 = 1849 14350 15 47^2 = 2209 19363 34 139^2 = 19321 21555 16 53^2 = 2809 23553 17 59^2 = 3481 26615 38 163^2 = 26569 36109 21 73^2 = 5329 36533 43 191^2 = 36481 37302 44 193^2 = 37249 51588 49 227^2 = 51529 52576 20 71^2 = 5041 57183 52 239^2 = 57121 58064 19 67^2 = 4489 58144 53 241^2 = 58081 63067 54 251^2 = 63001
Programs
-
Mathematica
s = {1}; nn = 4000; r = 1; u = v = 2; c[_] = False; MapIndexed[Set[{a[First[#2]], c[#1]}, {#1, True}] &, s]; While[c[u], u++]; While[Or[c[v], CompositeQ[v]], v++]; Monitor[Reap[ Do[k = u; q = Product[a[h], {h, n - Min[k, n - 1], n - 1}]; While[Or[c[k], ! CoprimeQ[k, q]], If[k > n - 1, k = v; q = Product[a[i], {i, r}], k++; q *= a[n - k] ] ]; Set[{a[n], c[k]}, {k, True}]; If[And[PrimeQ[k], # > r], r = #] &[PrimePi[k]]; If[PrimeQ@ Sqrt[k], Sow[n]]; If[k == u, While[c[u], u++]]; If[k == v, While[Or[c[v], CompositeQ[v]], v++]], {n, Length[s] + 1, nn}] ][[-1, 1]], n]
Extensions
More terms from Jinyuan Wang, Feb 25 2025
Comments