cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381222 Smallest number missing from A381019 after A381019(n) has been found.

Original entry on oeis.org

2, 3, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 18
Offset: 1

Views

Author

N. J. A. Sloane, Feb 19 2025

Keywords

Crossrefs

A381095 Indices of prime squares in A381019.

Original entry on oeis.org

7, 13, 30, 55, 178, 468, 541, 854, 1454, 2099, 3744, 7330, 9091, 10138, 11917, 14154, 14350, 19363, 21555, 23553, 26615, 36109, 36533, 37302, 51588, 52576, 57183, 58064, 58144, 63067, 69927, 70135, 80174, 81920, 85923, 89936, 93749, 99240, 121884, 124693, 151411
Offset: 1

Views

Author

Michael De Vlieger, Feb 16 2025

Keywords

Comments

Let S = A381019.
Observation: S(n) < n for S(n) = prime(i)^2 for some i.

Examples

			Table listing n and S(n), where i = pi(sqrt(S(n))) and S = A381019. Asterisks denote confirmed S(n) = prime(i)^2 coprime to P(r)/prime(i), where P = A002110 and r, the index of the largest prime in S(1..n-1).
      n    i             S(n)
  --------------------------
      7    1     2^2 =     4 *
     13    2     3^2 =     9 *
     30    3     5^2 =    25 *
     55    4     7^2 =    49 *
    178    6    13^2 =   169 *
    468    5    11^2 =   121
    541    9    23^2 =   529 *
    854   10    29^2 =   841 *
   1454    7    17^2 =   289
   2099    8    19^2 =   361
   3744   18    61^2 =  3721 *
   7330   11    31^2 =   961
   9091   12    37^2 =  1369
  10138   13    41^2 =  1681
  11917   29   109^2 = 11881
  14154   14    43^2 =  1849
  14350   15    47^2 =  2209
  19363   34   139^2 = 19321
  21555   16    53^2 =  2809
  23553   17    59^2 =  3481
  26615   38   163^2 = 26569
  36109   21    73^2 =  5329
  36533   43   191^2 = 36481
  37302   44   193^2 = 37249
  51588   49   227^2 = 51529
  52576   20    71^2 =  5041
  57183   52   239^2 = 57121
  58064   19    67^2 =  4489
  58144   53   241^2 = 58081
  63067   54   251^2 = 63001
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 4000; r = 1; u = v = 2; c[_] = False;
    MapIndexed[Set[{a[First[#2]], c[#1]}, {#1, True}] &, s];
    While[c[u], u++]; While[Or[c[v], CompositeQ[v]], v++];
    Monitor[Reap[
      Do[k = u; q = Product[a[h], {h, n - Min[k, n - 1], n - 1}];
        While[Or[c[k], ! CoprimeQ[k, q]],
          If[k > n - 1, k = v; q = Product[a[i], {i, r}],
            k++; q *= a[n - k] ] ];
        Set[{a[n], c[k]}, {k, True}];
        If[And[PrimeQ[k], # > r], r = #] &[PrimePi[k]];
        If[PrimeQ@ Sqrt[k], Sow[n]];
        If[k == u, While[c[u], u++]];
        If[k == v, While[Or[c[v], CompositeQ[v]], v++]],
      {n, Length[s] + 1, nn}] ][[-1, 1]], n]

Extensions

More terms from Jinyuan Wang, Feb 25 2025
Showing 1-2 of 2 results.